skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical abundances for a sample of FGK dwarfs in the Pleiades open cluster from APOGEE
ABSTRACT This paper presents chemical abundances of 12 elements (C, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe) for 80 FGK dwarfs in the Pleiades open cluster, which span a temperature range of $$\sim$$2000 K in T$$_{\rm eff}$$, using the high-resolution (R$$\sim$$22 500) near-infrared SDSS (Sloan Digital Sky Survey)-IV/APOGEE (Apache Point Observatory Galactic Evolution Experiment) spectra ($$\lambda$$1.51–1.69 $$\mu$$m). Using a 1D local thermodynamic equilibrium abundance analysis, we determine an overall metallicity of [Fe/H]  = +0.03 $$\pm$$ 0.04 dex, with the elemental ratios [$$\alpha$$/Fe]  = +0.01 $$\pm$$ 0.05, [odd-z/Fe]  = –0.04 $$\pm$$ 0.08, and [iron peak/Fe]  = –0.02 $$\pm$$ 0.08. These abundances for the Pleiades are in line with the abundances of other open clusters at similar galactocentric distances as presented in the literature. Examination of the abundances derived from each individual spectral line revealed that several of the stronger lines displayed trends of decreasing abundance with decreasing $$T_{\rm eff}$$. The list of spectral lines that yield abundances that are independent of $$T_{\rm eff}$$ are presented and used for deriving the final abundances. An investigation into possible causes of the temperature-dependent abundances derived from the stronger lines suggests that the radiative codes and the APOGEE line list we employ may inadequately model van der Waals broadening, in particular in the cooler K dwarfs.  more » « less
Award ID(s):
2206543
PAR ID:
10549316
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
534
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3005-3021
Size(s):
p. 3005-3021
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H -band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work’s M dwarfs is −0.05 ± 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T eff , log g = +0.21 dex, −50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = −0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs. 
    more » « less
  2. Open clusters are one of the best astrophysical laboratories we have available for stellar astrophysics studies. This work presents metallicities and individual abundances for 14 M dwarfs and six G dwarfs from two well-known open clusters: Hyades and Coma Berenices. Our analysis is based on near-infrared (1.51–1.69μm), high-resolution (R∼ 22,500) spectra obtained from the Sloan Digital Sky Survey (SDSS) IV/APOGEE Survey. Using one-dimensional, plane-parallel MARCS model atmospheres, the APOGEE line list, and the Turbospectrum radiative transfer code in local thermodynamic equilibrium, we derived spectroscopic stellar parameters for the M dwarfs, along with abundances of 13 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe) for both M and G dwarfs. We find a high degree of chemical homogeneity within each cluster when comparing abundances derived from M and G dwarfs:δ[M/H] (M dwarfs–G dwarfs) of 0.01 ± 0.04, and 0.02 ± 0.03 for the Hyades and Coma Berenices, respectively. The overall cluster metallicities derived from M dwarfs (Hyades: 0.16 ± 0.03 and Coma Berenices: 0.02 ± 0.06) are consistent with previous literature determinations. Finally, we demonstrate the value of M dwarfs as key tracers in Galactic archeology, emphasizing their potential for studying Galactic metallicity gradients and chemical evolution. 
    more » « less
  3. ABSTRACT Previous results in the literature have found the young inner-disc open cluster NGC 6705 to be mildly α-enhanced. We examined this possibility via an independent chemical abundance analysis for 11 red-giant members of NGC 6705. The analysis is based on near-infrared APOGEE spectra and relies on LTE calculations using spherical model atmospheres and radiative transfer. We find a mean cluster metallicity of $$\rm [Fe/H] = +0.13 \pm 0.04$$, indicating that NGC 6705 is metal-rich, as may be expected for a young inner-disc cluster. The mean α-element abundance relative to iron is $$\rm \langle [\alpha /Fe]\rangle =-0.03 \pm 0.05$$, which is not at odds with expectations from general Galactic abundance trends. NGC 6705 also provides important probes for studying stellar mixing, given its turn-off mass of M ∼ 3.3 M⊙. Its red giants have low 12C abundances ([12C/Fe] = −0.16) and enhanced 14N abundances ([14N/Fe] = +0.51), which are key signatures of the first dredge-up on the red giant branch. An additional signature of dredge-up was found in the Na abundances, which are enhanced by [Na/Fe] = +0.29, with a very small non-LTE correction. The 16O and Al abundances are found to be near-solar. All of the derived mixing-sensitive abundances are in agreement with stellar models of approximately 3.3 M⊙ evolving along the red giant branch and onto the red clump. As found in young open clusters with similar metallicities, NGC 6705 exhibits a mild excess in the s-process element cerium with $$\rm [Ce/Fe] = +0.13\pm 0.07$$. 
    more » « less
  4. null (Ed.)
    ABSTRACT The All-Sky Automated Survey for Supernovae provides long baseline (∼4 yr) V-band light curves for sources brighter than V≲ 17 mag across the whole sky. We produced V-band light curves for a total of ∼61.5 million sources and systematically searched these sources for variability. We identified ∼426 000 variables, including ∼219 000 new discoveries. Most ($${\sim }74{ per\ cent}$$) of our discoveries are in the Southern hemisphere. Here, we use spectroscopic information from LAMOST, GALAH, RAVE, and APOGEE to study the physical and chemical properties of these variables. We find that metal-poor eclipsing binaries have orbital periods that are shorter than metal-rich systems at fixed temperature. We identified rotational variables on the main-sequence, red giant branch, and the red clump. A substantial fraction ($${\gtrsim }80{ per\ cent}$$) of the rotating giants have large $$v$$rot or large near-ultraviolet excesses also indicative of fast rotation. The rotational variables have unusual abundances suggestive of analysis problems. Semiregular variables tend to be lower metallicity ($$\rm [Fe/H]{\sim }-0.5$$) than most giant stars. We find that the APOGEE DR16 temperatures of oxygen-rich semiregular variables are strongly correlated with the WRP − WJK colour index for $$\rm T_{eff}\lesssim 3800$$ K. Using abundance measurements from APOGEE DR16, we find evidence for Mg and N enrichment in the semiregular variables. We find that the Aluminum abundances of the semiregular variables are strongly correlated with the pulsation period, where the variables with $$\rm P\gtrsim 60$$ d are significantly depleted in Al. 
    more » « less
  5. ABSTRACT The convective dredge-up of carbon from the interiors of hydrogen-deficient white dwarfs has long been invoked to explain the presence of carbon absorption features in the spectra of cool DQ stars ($$T_{\rm eff} \lt 10\,000\,$$K). It has been hypothesized that this transport process is not limited to DQ white dwarfs and also operates, albeit less efficiently, in non-DQ hydrogen-deficient white dwarfs within the same temperature range. This non-DQ population is predominantly composed of DC white dwarfs, which exhibit featureless optical spectra. However, no direct observational evidence of ubiquitous carbon pollution in DC stars has thus far been uncovered. In this Letter, we analyse data from the Galaxy Evolution Explorer to reveal the photometric signature of ultraviolet carbon lines in most DC white dwarfs in the $$8500\, {\rm K} \le T_{\rm eff} \le 10\,500\,$$K temperature range. Our results show that the vast majority of hydrogen-deficient white dwarfs experience carbon dredge-up at some point in their evolution. 
    more » « less