skip to main content


Title: Acid p K a Dependence in O–O Bond Heterolysis of a Nonheme Fe III –OOH Intermediate To Form a Potent Fe V ═O Oxidant with Heme Compound I-Like Reactivity
Award ID(s):
1665391
NSF-PAR ID:
10167482
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
141
Issue:
40
ISSN:
0002-7863
Page Range / eLocation ID:
16093 to 16107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The gene encoding the cyanobacterial ferritinSynFtn is up-regulated in response to copper stress. Here, we show that, whileSynFtn does not interact directly with copper, it is highly unusual in several ways. First, its catalytic diiron ferroxidase center is unlike those of all other characterized prokaryotic ferritins and instead resembles an animal H-chain ferritin center. Second, as demonstrated by kinetic, spectroscopic, and high-resolution X-ray crystallographic data, reaction of O2with the di-Fe2+center results in a direct, one-electron oxidation to a mixed-valent Fe2+/Fe3+form. Iron–O2chemistry of this type is currently unknown among the growing family of proteins that bind a diiron site within a four α-helical bundle in general and ferritins in particular. The mixed-valent form, which slowly oxidized to the more usual di-Fe3+form, is an intermediate that is continually generated during mineralization. Peroxide, rather than superoxide, is shown to be the product of O2reduction, implying that ferroxidase centers function in pairs via long-range electron transfer through the protein resulting in reduction of O2bound at only one of the centers. We show that electron transfer is mediated by the transient formation of a radical on Tyr40, which lies ∼4 Å from the diiron center. As well as demonstrating an expansion of the iron–O2chemistry known to occur in nature, these data are also highly relevant to the question of whether all ferritins mineralize iron via a common mechanism, providing unequivocal proof that they do not.

     
    more » « less
  2. null (Ed.)
  3. Over recent years, great efforts have been made to push the limits of layered transition metal oxides for secondary battery cathodes. This is particularly true for overall capacity, which has reached a terminal theoretical value for many materials. One avenue for increasing this capacity during charging is the intercalation of anions post cation deintercalation. This work investigates the charging mechanism of the P3-Na0.5Ni0.25 Mn0.75O2 cathode material through cation (Na) deintercalation and anion (ClO4) intercalation by means of density functional theory. The calculations corroborate experimental findings of increased capacity (135 mAh g-1 to 180 mAh g-1) through the intercalation of anions. However, this work demonstrates that a process of simultaneous cation deintercalation/anion intercalation is the primary charging mechanism, with charge compensation reactions of Ni2+/Ni4+ and O2-/O- occurring within the cathode material. To elucidate this simultaneous process, a novel method for computationally determining anion voltage in which one must consider full electrolyte interactions is proposed. Based on the results, it is believed that a simultaneous cation deintercalation/anion intercalation mechanism provides one potential avenue for the discovery of the next generation of secondary batteries. 
    more » « less