skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidating the origins of enhanced CO 2 reduction in manganese electrocatalysts bearing pendant hydrogen-bond donors
Complexes of the general form [Mn(X)(CO) 3 bpy] (X = a variety of monodentate ligands, bpy = 2,2′-bipyridine) have been reported to act as electrocatalysts for the reduction of CO 2 to CO. In this work, a series of phenol and anisole substituted bipyridine ligands were synthesized and ligated to a manganese metal center in order to probe for an intramolecular hydrogen-bonding interaction in the transition state of CO 2 reduction. Ligands without the ability to intramolecularly hydrogen bond displayed decreased catalytic current density compared to those with the ability to hydrogen bond with CO 2 . Electrocatalysis was studied by performing voltammetric and bulk electrolysis experiments under argon or CO 2 environments. Measurements of catalytic rates using hydrogen vs. deuterium for the intramolecular H/D-bonding step show that there is an isotope effect associated with the catalysis. The data presented herein suggest a mechanism involving two subsequent equilibrium isotope effects in combination with a primary kinetic isotope effect.  more » « less
Award ID(s):
1800400
PAR ID:
10167522
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
48
Issue:
33
ISSN:
1477-9226
Page Range / eLocation ID:
12730 to 12737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. [Mn(bpy)(CO) 3 Br] is recognized as a benchmark electrocatalyst for CO 2 reduction to CO, with the doubly reduced [Mn(bpy)(CO) 3 ] − proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO 2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO) 4 ] + , thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO) 4 ][SbF 6 ] ( 1 ) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO 2 to CO in the presence of H 2 O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g. , [Mn(bpy)(CO) 3 Br] ( 2 ) and [Mn(bpy)(CO) 3 (MeCN)][PF 6 ] ( 3 ). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1 , producing a [Mn(bpy)(CO) 3 (MeCN)] + species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO 2 reduction. 
    more » « less
  2. Heterogenized molecular catalysts have shown interesting activities in different chemical transformations. In our previous studies, a molecular catalyst, Re(bpy)(CO)3Cl where bpy is 2,2’-bipyridine, was covalently attached to silica surfaces via an amide linkage for use in photocatalytic CO2 reduction. Derivatizing the bpy ligand with electron-withdrawing amide groups led to detrimental effects on the catalytic activity of Re(bpy)(CO)3Cl. In this study, an alkyl amine linkage is utilized to attach Re(bpy)(CO)3Cl onto SiO2 in order to eliminate the detrimental effects of the amide linkage by breaking the conjugation between the bpy ligand and the amide group. However, the heterogenized Re(I) catalyst containing the alkyl amine linkage demonstrates even lower activity than the one containing the amide linkage in photocatalytic CO2 reduction. Infrared studies suggest that the presence of the basic amine group led to the formation of a photocatalytically inactive Re(I)-OH species on SiO2. Furthermore, the amine group likely contributes to the stabilization of a surface Re(I)-carboxylato species formed upon light irradiation, resulting in the low activity of the heterogenized Re(I) catalyst containing the alkyl amine linkage. 
    more » « less
  3. null (Ed.)
    We report the hydrothermal syntheses and crystal structures of aquabis(2,2′-bipyridine-κ 2 N , N ′)copper(II) hexafluoridosilicate tetrahydrate, [Cu(bpy) 2 (H 2 O)][SiF 6 ]·4H 2 O (bpy is 2,2′-bipyridine, C 10 H 8 N 2 ), (I), bis(2,2′-bipyridine-3κ 2 N , N ′)-di-μ-fluorido-1:3κ 2 F : F ;2:3κ 2 F : F -decafluorido-1κ 5 F ,2κ 5 F -ditantalum(V)copper(II), [Cu(bpy) 2 (TaF 6 ) 2 ], (II), tris(2,2′-bipyridine-κ 2 N , N ′)copper(II) bis[hexafluoridotantalate(V)], [Cu(bpy) 3 ][TaF 6 ] 2 , (III), and catena -poly[[diaqua(2,2′-bipyridine-κ 2 N , N ′)copper(II)]-μ-fluorido-tetrafluoridotin-μ-fluorido], [Cu(bpy)(H 2 O) 2 SnF 6 ] n , (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C 2 , D 2 , and D 3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H...F and O—H...O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin. 
    more » « less
  4. The roles of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and water in controlling the mechanism, energetics, and electrocatalytic activity of CO2 reduction to CO on silver in nonaqueous electrolytes were investigated. The first electron transfer occurs to CO2 at reduced overpotentials when it is trapped between the planes of the [EMIM]+ ring and the electrode surface due to cation reorientation as determined from voltammetry, in situ surface-enhanced Raman spectroscopy, and density functional theory calculations. Within this interface, water up to 0.5 M does not induce significant Faradaic activity, opposing the notion of it being a free proton source. Instead, water acts as a hydrogen bond donor, and the proton is sourced from [EMIM]+. Furthermore, this study demonstrates that alcohols with varying acidities tune the hydrogen bonding network in the interfacial microenvironment to lower the energetics required for CO2 reduction. The hydrogen bonding suppresses the formation of inactive carboxylate species, thus preserving the catalytic activity of [EMIM]+. The ability to tune the hydrogen bonding network opens new avenues for advancing IL-mediated electrocatalytic reactions in nonaqueous electrolytes. 
    more » « less
  5. Abstract A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products. 
    more » « less