skip to main content


Search for: All records

Award ID contains: 1800400

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The complex, [{[Mn(bpy)(CO) 3 ] 2 }(μ-CN)] + (Mn2CN+), has previously been shown to photochemically reduce CO 2 to CO. The detailed mechanism behind its reactivity was not elucidated. Herein, the photoevolution of this reaction is studied in acetonitrile (MeCN) using IR and UV-vis spectroscopy. Samples were excited into the Mn I → π* bpy metal-to-ligand charge transfer (MLCT) absorption band triggering CO loss, and rapid MeCN solvent ligation at the open coordination site. It is concluded that this process occurs selectively at the Mn axial ligation site that is trans to the C-end of the bridging cyanide. Upon further photolysis, the metal–metal bonded dimeric species, [(CO) 3 (bpy)Mn–Mn(bpy)(CO) 3 ] (Mn–Mn) is observed to form under anaerobic conditions. The presence of this dimeric species coincides with the observation of CO production. When oxygen is present, CO 2 photoreduction does not occur, which is attributed to the inability of Mn2CN+ to convert to the metal–metal bonded dimer. Photolysis experiments, where the Mn–Mn dimer is formed photochemically under argon first and then exposed to CO 2 , reveal that it is the radical species, [Mn(bpy)(CO) 3 ˙ ] ( Mn˙ ), that interacts with the CO 2 . Since the presence of Mn–Mn and light is required for CO production, [Mn(bpy)(CO) 3 ˙] is proposed to be a photochemical reagent for the transformation of CO 2 to CO. 
    more » « less
  2. [Mn(bpy)(CO) 3 Br] is recognized as a benchmark electrocatalyst for CO 2 reduction to CO, with the doubly reduced [Mn(bpy)(CO) 3 ] − proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO 2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO) 4 ] + , thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO) 4 ][SbF 6 ] ( 1 ) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO 2 to CO in the presence of H 2 O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g. , [Mn(bpy)(CO) 3 Br] ( 2 ) and [Mn(bpy)(CO) 3 (MeCN)][PF 6 ] ( 3 ). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1 , producing a [Mn(bpy)(CO) 3 (MeCN)] + species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO 2 reduction. 
    more » « less
  3. Complexes of the general form [Mn(X)(CO) 3 bpy] (X = a variety of monodentate ligands, bpy = 2,2′-bipyridine) have been reported to act as electrocatalysts for the reduction of CO 2 to CO. In this work, a series of phenol and anisole substituted bipyridine ligands were synthesized and ligated to a manganese metal center in order to probe for an intramolecular hydrogen-bonding interaction in the transition state of CO 2 reduction. Ligands without the ability to intramolecularly hydrogen bond displayed decreased catalytic current density compared to those with the ability to hydrogen bond with CO 2 . Electrocatalysis was studied by performing voltammetric and bulk electrolysis experiments under argon or CO 2 environments. Measurements of catalytic rates using hydrogen vs. deuterium for the intramolecular H/D-bonding step show that there is an isotope effect associated with the catalysis. The data presented herein suggest a mechanism involving two subsequent equilibrium isotope effects in combination with a primary kinetic isotope effect. 
    more » « less
  4. Thin films of Ni 3 Al and Ni 3 Ga on carbon solid supports have been shown to generate multi-carbon products in electrochemical CO 2 reduction, an activity profile that, until recently, was ascribed exclusively to Cu-based catalysts. This catalytic behavior has introduced questions regarding the role of each metal, as well as other system components, during CO 2 reduction. Here, the significance of electrode structure and solid support choice in determining higher- versus lower-order reduction products is explored, and the commonly invoked Fischer–Tropsch-type mechanism of CO 2 reduction to multi-carbon products is indirectly probed. Electrochemical studies of both intermetallic and non-mixed Ni–Group 13 catalyst films suggest that intermetallic character is required to achieve C2 and C3 products irrespective of carbon support choice, negating the possibility of separate metal sites performing distinct yet complementary roles in CO 2 reduction. Furthermore, Ni 3 Al and Ni 3 Ga were shown to be incapable of generating higher-order reduction products in D 2 O, suggesting a departure from accepted mechanisms for CO 2 reduction on Cu. Additional routes to multi-carbon products may therefore be accessible when developing intermetallic catalysts for CO 2 electroreduction. 
    more » « less
  5. Manganese( i ) tricarbonyl complexes such as [Mn(bpy)(CO) 3 L] (L = Br, or CN) are known to be electrocatalysts for CO 2 reduction to CO. However, due to their rapid photodegradation under UV and visible light, these monomeric manganese complexes have not been considered as photocatalysts for CO 2 reduction without the use of a photosensitizer. In this paper, we report a cyanide-bridged di-manganese complex, {[Mn(bpy)(CO) 3 ] 2 (μ-CN)}ClO 4 , which is both electrocatalytic and photochemically active for CO 2 reduction to CO. Compared to the [Mn(bpy)(CO) 3 CN] electrocatalyst, our CN-bridged binuclear complex is a more efficient electrocatalyst for CO 2 reduction using H 2 O as a proton source. In addition, we report a photochemical CO 2 reduction to CO using the dimanganese complex under 395 nm irradiation. 
    more » « less