skip to main content


Title: Improving RNA secondary structure prediction via state inference with deep recurrent neural networks
Abstract The problem of determining which nucleotides of an RNA sequence are paired or unpaired in the secondary structure of an RNA, which we call RNA state inference, can be studied by different machine learning techniques. Successful state inference of RNA sequences can be used to generate auxiliary information for data-directed RNA secondary structure prediction. Typical tools for state inference, such as hidden Markov models, exhibit poor performance in RNA state inference, owing in part to their inability to recognize nonlocal dependencies. Bidirectional long short-term memory (LSTM) neural networks have emerged as a powerful tool that can model global nonlinear sequence dependencies and have achieved state-of-the-art performances on many different classification problems. This paper presents a practical approach to RNA secondary structure inference centered around a deep learning method for state inference. State predictions from a deep bidirectional LSTM are used to generate synthetic SHAPE data that can be incorporated into RNA secondary structure prediction via the Nearest Neighbor Thermodynamic Model (NNTM). This method produces predicted secondary structures for a diverse test set of 16S ribosomal RNA that are, on average, 25 percentage points more accurate than undirected MFE structures. Accuracy is highly dependent on the success of our state inference method, and investigating the global features of our state predictions reveals that accuracy of both our state inference and structure inference methods are highly dependent on the similarity of pairing patterns of the sequence to the training dataset. Availability of a large training dataset is critical to the success of this approach. Code available at https://github.com/dwillmott/rna-state-inf .  more » « less
Award ID(s):
1821144 1620082
NSF-PAR ID:
10167601
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computational and Mathematical Biophysics
Volume:
8
Issue:
1
ISSN:
2544-7297
Page Range / eLocation ID:
36 to 50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue–residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue–residue contacts in homodimers from residue–residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue–residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features.

    Results

    Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset and CASP-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%, 47.10% and 33.50% respectively at 6 Å contact threshold, which is substantially better than DeepHomo and DNCON2_inter and similar to Glinter. Moreover, our experiments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the unbound state as input, DRCon still performs well, even though its accuracy is lower than using true tertiary structures in the bound state are used as input. Finally, our case study shows that good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers.

    Availability and implementation

    The source code of DRCon is available at https://github.com/jianlin-cheng/DRCon. The datasets are available at https://zenodo.org/record/5998532#.YgF70vXMKsB.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. null (Ed.)
    Protein phosphorylation, which is one of the most important post-translational modifications (PTMs), is involved in regulating myriad cellular processes. Herein, we present a novel deep learning based approach for organism-specific protein phosphorylation site prediction in Chlamydomonas reinhardtii, a model algal phototroph. An ensemble model combining convolutional neural networks and long short-term memory (LSTM) achieves the best performance in predicting phosphorylation sites in C. reinhardtii. Deemed Chlamy-EnPhosSite, the measured best AUC and MCC are 0.90 and 0.64 respectively for a combined dataset of serine (S) and threonine (T) in independent testing higher than those measures for other predictors. When applied to the entire C. reinhardtii proteome (totaling 1,809,304 S and T sites), Chlamy-EnPhosSite yielded 499,411 phosphorylated sites with a cut-off value of 0.5 and 237,949 phosphorylated sites with a cut-off value of 0.7. These predictions were compared to an experimental dataset of phosphosites identified by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in a blinded study and approximately 89.69% of 2,663 C. reinhardtii S and T phosphorylation sites were successfully predicted by Chlamy-EnPhosSite at a probability cut-off of 0.5 and 76.83% of sites were successfully identified at a more stringent 0.7 cut-off. Interestingly, Chlamy-EnPhosSite also successfully predicted experimentally confirmed phosphorylation sites in a protein sequence (e.g., RPS6 S245) which did not appear in the training dataset, highlighting prediction accuracy and the power of leveraging predictions to identify biologically relevant PTM sites. These results demonstrate that our method represents a robust and complementary technique for high-throughput phosphorylation site prediction in C. reinhardtii. It has potential to serve as a useful tool to the community. Chlamy-EnPhosSite will contribute to the understanding of how protein phosphorylation influences various biological processes in this important model microalga. 
    more » « less
  3. null (Ed.)
    Abstract Protein phosphorylation, which is one of the most important post-translational modifications (PTMs), is involved in regulating myriad cellular processes. Herein, we present a novel deep learning based approach for organism-specific protein phosphorylation site prediction in Chlamydomonas reinhardtii , a model algal phototroph. An ensemble model combining convolutional neural networks and long short-term memory (LSTM) achieves the best performance in predicting phosphorylation sites in C. reinhardtii. Deemed Chlamy-EnPhosSite, the measured best AUC and MCC are 0.90 and 0.64 respectively for a combined dataset of serine (S) and threonine (T) in independent testing higher than those measures for other predictors. When applied to the entire C. reinhardtii proteome (totaling 1,809,304 S and T sites), Chlamy-EnPhosSite yielded 499,411 phosphorylated sites with a cut-off value of 0.5 and 237,949 phosphorylated sites with a cut-off value of 0.7. These predictions were compared to an experimental dataset of phosphosites identified by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in a blinded study and approximately 89.69% of 2,663 C. reinhardtii S and T phosphorylation sites were successfully predicted by Chlamy-EnPhosSite at a probability cut-off of 0.5 and 76.83% of sites were successfully identified at a more stringent 0.7 cut-off. Interestingly, Chlamy-EnPhosSite also successfully predicted experimentally confirmed phosphorylation sites in a protein sequence (e.g., RPS6 S245) which did not appear in the training dataset, highlighting prediction accuracy and the power of leveraging predictions to identify biologically relevant PTM sites. These results demonstrate that our method represents a robust and complementary technique for high-throughput phosphorylation site prediction in C. reinhardtii. It has potential to serve as a useful tool to the community. Chlamy-EnPhosSite will contribute to the understanding of how protein phosphorylation influences various biological processes in this important model microalga. 
    more » « less
  4. Abstract Motivation The success of genome sequencing techniques has resulted in rapid explosion of protein sequences. Collections of multiple homologous sequences can provide critical information to the modeling of structure and function of unknown proteins. There are however no standard and efficient pipeline available for sensitive multiple sequence alignment (MSA) collection. This is particularly challenging when large whole-genome and metagenome databases are involved. Results We developed DeepMSA, a new open-source method for sensitive MSA construction, which has homologous sequences and alignments created from multi-sources of whole-genome and metagenome databases through complementary hidden Markov model algorithms. The practical usefulness of the pipeline was examined in three large-scale benchmark experiments based on 614 non-redundant proteins. First, DeepMSA was utilized to generate MSAs for residue-level contact prediction by six coevolution and deep learning-based programs, which resulted in an accuracy increase in long-range contacts by up to 24.4% compared to the default programs. Next, multiple threading programs are performed for homologous structure identification, where the average TM-score of the template alignments has over 7.5% increases with the use of the new DeepMSA profiles. Finally, DeepMSA was used for secondary structure prediction and resulted in statistically significant improvements in the Q3 accuracy. It is noted that all these improvements were achieved without re-training the parameters and neural-network models, demonstrating the robustness and general usefulness of the DeepMSA in protein structural bioinformatics applications, especially for targets without homologous templates in the PDB library. Availability and implementation https://zhanglab.ccmb.med.umich.edu/DeepMSA/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Accurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Results Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the precision of distance classification. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps. Availability The software package, source code, and data of DeepDist2 are freely available at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM. 
    more » « less