skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A 10-Year Warm-Season Climatology of Horizontal Convective Rolls and Cellular Convection in Central Oklahoma
Abstract Horizontal convective rolls (HCRs) and cellular convection (cells) are frequently observed within the planetary boundary layer. Yet understanding of the evolution, seasonal variation, and characteristics of such boundary layer phenomena is limited as previous studies used observations from field experiments or satellites. As a result, little is known about the mean climatology and monthly variation of HCRs and cells. Polarimetric WSR-88D radar observations are used to develop a 10-yr April–September climatology in central Oklahoma including HCR and cell occurrence, duration, and aspect ratios as well as HCR orientation angles and wavelengths. Results indicate that HCRs or cells occur on over 92% of days without precipitation during the warm season. HCRs or cells typically form in midmorning and may persist throughout the day or transition between modes before dissipating around sunset. HCRs generally persist for 1–6 h with typical wavelengths of 2–10 km and most aspect ratios between 1 and 7. Rolls are often oriented within 10° of the mean boundary layer wind but can be as much as 30° off this direction. Mean HCR aspect ratios in this study remain constant during the afternoon, but decrease early in the day and increase late in the day, diverging from previous overland HCR studies. Cells generally persist for 2–6 h with aspect ratios of 1–6. These results should facilitate future studies on convection initiation, formation mechanisms of boundary layer organization, and model parameterization.  more » « less
Award ID(s):
1632850
PAR ID:
10167646
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
1
ISSN:
0027-0644
Page Range / eLocation ID:
21 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Typical environmental conditions associated with horizontal convective rolls (HCRs) and cellular convection have been known for over 50 years. Yet our ability to predict whether HCRs, cellular convection, or no discernable organized (null) circulation will occur within a well-mixed convective boundary layer based upon easily observed environmental variables has been limited. Herein, a large database of 50 cases each of HCR, cellular convection, and null events is created that includes observations of mean boundary layer wind and wind shear, boundary layer depth; surface observations of wind, temperature, and relative humidity; and estimates of surface sensible heat flux. Results from a multiclass linear discriminant analysis applied to these data indicate that environmental conditions can be useful in predicting whether HCRs, cellular convection, or no circulation occurs, with the analysis identifying the correct circulation type on 72% of the case days. This result is slightly better than using a mean convective boundary layer (CBL) wind speed of 6 m s−1to discriminate between HCRs and cells. However, the mean CBL wind speed has no ability to further separate out cases with no CBL circulation. The key environmental variables suggested by the discriminant analysis are mean sensible heat flux, friction velocity, and the Obukhov length. 
    more » « less
  2. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land– sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island. 
    more » « less
  3. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island. 
    more » « less
  4. null (Ed.)
    Steady two-dimensional Rayleigh–Bénard convection between stress-free isothermal boundaries is studied via numerical computations. We explore properties of steady convective rolls with aspect ratios $${\rm \pi} /5\leqslant \varGamma \leqslant 4{\rm \pi}$$ , where $$\varGamma$$ is the width-to-height ratio for a pair of counter-rotating rolls, over eight orders of magnitude in the Rayleigh number, $$10^3\leqslant Ra\leqslant 10^{11}$$ , and four orders of magnitude in the Prandtl number, $$10^{-2}\leqslant Pr\leqslant 10^2$$ . At large $Ra$ where steady rolls are dynamically unstable, the computed rolls display $$Ra \rightarrow \infty$$ asymptotic scaling. In this regime, the Nusselt number $Nu$ that measures heat transport scales as $$Ra^{1/3}$$ uniformly in $Pr$ . The prefactor of this scaling depends on $$\varGamma$$ and is largest at $$\varGamma \approx 1.9$$ . The Reynolds number $Re$ for large- $Ra$ rolls scales as $$Pr^{-1} Ra^{2/3}$$ with a prefactor that is largest at $$\varGamma \approx 4.5$$ . All of these large- $Ra$ features agree quantitatively with the semi-analytical asymptotic solutions constructed by Chini & Cox ( Phys. Fluids , vol. 21, 2009, 083603). Convergence of $Nu$ and $Re$ to their asymptotic scalings occurs more slowly when $Pr$ is larger and when $$\varGamma$$ is smaller. 
    more » « less
  5. This work employs single-mode equations to study convection and double-diffusive convection in a porous medium where the Darcy law provides large-scale damping. We first consider thermal convection with salinity as a passive scalar. The single-mode solutions resembling steady convection rolls reproduce the qualitative behavior of root-mean-square and mean temperature profiles of time-dependent states at high Rayleigh numbers from direct numerical simulations (DNS). We also show that the single-mode solutions are consistent with the heat-exchanger model that describes well the mean temperature gradient in the interior. The Nusselt number predicted from the single-mode solutions exhibits a scaling law with Rayleigh number close to that followed by exact 2D steady convection rolls, although large aspect ratio DNS results indicate a faster increase. However, the single-mode solutions at a high wavenumber predict Nusselt numbers close to the DNS results in narrow domains. We also employ the single-mode equations to analyze the influence of active salinity, introducing a salinity contribution to the buoyancy, but with a smaller diffusivity than the temperature. The single-mode solutions are able to capture the stabilizing effect of an imposed salinity gradient and describe the standing and traveling wave behaviors observed in DNS. The Sherwood numbers obtained from single-mode solutions show a scaling law with the Lewis number that is close to the DNS computations with passive or active salinity. This work demonstrates that single-mode solutions can be successfully applied to this system whenever periodic or no-flux boundary conditions apply in the horizontal. 
    more » « less