- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Banghoff, John R. (2)
-
Kumjian, Matthew R. (2)
-
Stensrud, David J. (2)
-
Kumjian, Matthew_R (1)
-
Pan, Ying (1)
-
Santellanes, Sean_R (1)
-
Sorber, Jacob D. (1)
-
Stensrud, David_J (1)
-
Young, George S. (1)
-
Young, George_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Typical environmental conditions associated with horizontal convective rolls (HCRs) and cellular convection have been known for over 50 years. Yet our ability to predict whether HCRs, cellular convection, or no discernable organized (null) circulation will occur within a well-mixed convective boundary layer based upon easily observed environmental variables has been limited. Herein, a large database of 50 cases each of HCR, cellular convection, and null events is created that includes observations of mean boundary layer wind and wind shear, boundary layer depth; surface observations of wind, temperature, and relative humidity; and estimates of surface sensible heat flux. Results from a multiclass linear discriminant analysis applied to these data indicate that environmental conditions can be useful in predicting whether HCRs, cellular convection, or no circulation occurs, with the analysis identifying the correct circulation type on 72% of the case days. This result is slightly better than using a mean convective boundary layer (CBL) wind speed of 6 m s−1to discriminate between HCRs and cells. However, the mean CBL wind speed has no ability to further separate out cases with no CBL circulation. The key environmental variables suggested by the discriminant analysis are mean sensible heat flux, friction velocity, and the Obukhov length.more » « less
-
Banghoff, John R.; Sorber, Jacob D.; Stensrud, David J.; Young, George S.; Kumjian, Matthew R. (, Monthly Weather Review)Abstract Horizontal convective rolls (HCRs) and cellular convection (cells) are frequently observed within the planetary boundary layer. Yet understanding of the evolution, seasonal variation, and characteristics of such boundary layer phenomena is limited as previous studies used observations from field experiments or satellites. As a result, little is known about the mean climatology and monthly variation of HCRs and cells. Polarimetric WSR-88D radar observations are used to develop a 10-yr April–September climatology in central Oklahoma including HCR and cell occurrence, duration, and aspect ratios as well as HCR orientation angles and wavelengths. Results indicate that HCRs or cells occur on over 92% of days without precipitation during the warm season. HCRs or cells typically form in midmorning and may persist throughout the day or transition between modes before dissipating around sunset. HCRs generally persist for 1–6 h with typical wavelengths of 2–10 km and most aspect ratios between 1 and 7. Rolls are often oriented within 10° of the mean boundary layer wind but can be as much as 30° off this direction. Mean HCR aspect ratios in this study remain constant during the afternoon, but decrease early in the day and increase late in the day, diverging from previous overland HCR studies. Cells generally persist for 2–6 h with aspect ratios of 1–6. These results should facilitate future studies on convection initiation, formation mechanisms of boundary layer organization, and model parameterization.more » « less
-
Banghoff, John R.; Stensrud, David J.; Kumjian, Matthew R. (, Journal of Atmospheric and Oceanic Technology)
An official website of the United States government
