skip to main content


Title: Transferring Robustness for Graph Neural Network Against Poisoning Attacks
Graph neural networks (GNNs) are widely used in many applications. However, their robustness against adversarial attacks is criticized. Prior studies show that using unnoticeable modifications on graph topology or nodal features can significantly reduce the performances of GNNs. It is very challenging to design robust graph neural networks against poisoning attack and several efforts have been taken. Existing work aims at reducing the negative impact from adversarial edges only with the poisoned graph, which is sub-optimal since they fail to discriminate adversarial edges from normal ones. On the other hand, clean graphs from similar domains as the target poisoned graph are usually available in the real world. By perturbing these clean graphs, we create supervised knowledge to train the ability to detect adversarial edges so that the robustness of GNNs is elevated. However, such potential for clean graphs is neglected by existing work. To this end, we investigate a novel problem of improving the robustness of GNNs against poisoning attacks by exploring clean graphs. Specifically, we propose PA-GNN, which relies on a penalized aggregation mechanism that directly restrict the negative impact of adversarial edges by assigning them lower attention coefficients. To optimize PA-GNN for a poisoned graph, we design a meta-optimization algorithm that trains PA-GNN to penalize perturbations using clean graphs and their adversarial counterparts, and transfers such ability to improve the robustness of PA-GNN on the poisoned graph. Experimental results on four real-world datasets demonstrate the robustness of PA-GNN against poisoning attacks on graphs.  more » « less
Award ID(s):
1909702
NSF-PAR ID:
10167740
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
WSDM '20: Proceedings of the 13th International Conference on Web Search and Data Mining
Page Range / eLocation ID:
600 to 608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNN) offer the powerful approach to node classification in complex networks across many domains including social media, E-commerce, and FinTech. However, recent studies show that GNNs are vulnerable to attacks aimed at adversely impacting their node classification performance. Existing studies of adversarial attacks on GNN focus primarily on manipulating the connectivity between existing nodes, a task that requires greater effort on the part of the attacker in real-world applications. In contrast, it is much more expedient on the part of the attacker to inject adversarial nodes, e.g., fake profiles with forged links, into existing graphs so as to reduce the performance of the GNN in classifying existing nodes. Hence, we consider a novel form of node injection poisoning attacks on graph data. We model the key steps of a node injection attack, e.g., establishing links between the injected adversarial nodes and other nodes, choosing the label of an injected node, etc. by a Markov Decision Process. We propose a novel reinforcement learning method for Node Injection Poisoning Attacks (NIPA), to sequentially modify the labels and links of the injected nodes, without changing the connectivity between existing nodes. Specifically, we introduce a hierarchical Q-learning network to manipulate the labels of the adversarial nodes and their links with other nodes in the graph, and design an appropriate reward function to guide the reinforcement learning agent to reduce the node classification performance of GNN. The results of the experiments show that NIPA is consistently more effective than the baseline node injection attack methods for poisoning graph data on three benchmark datasets. 
    more » « less
  2. null (Ed.)
    Deep learning methods for graphs achieve remarkable performance across a variety of domains. However, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). Here, we develop GNNGuard, a general algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure. GNNGuard can be straight-forwardly incorporated into any GNN. Its core principle is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack.GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. The revised edges allow for robust propagation of neural messages in the underlying GNN. GNNGuard introduces two novel components, the neighbor importance estimation, and the layer-wise graph memory, and we show empirically that both components are necessary for a successful defense. Across five GNNs, three defense methods, and five datasets,including a challenging human disease graph, experiments show that GNNGuard outperforms existing defense approaches by 15.3% on average. Remarkably, GNNGuard can effectively restore state-of-the-art performance of GNNs in the face of various adversarial attacks, including targeted and non-targeted attacks, and can defend against attacks on heterophily graphs. 
    more » « less
  3. Graph Neural Networks (GNNs) have been widely used in various graph-based applications. Recent studies have shown that GNNs are vulnerable to link-level membership inference attacks (LMIA) which can infer whether a given link was included in the training graph of a GNN model. While most of the studies focus on the privacy vulnerability of the links in the entire graph, none have inspected the privacy risk of specific subgroups of links (e.g., links between LGBT users). In this paper, we present the first study of disparity in subgroup vulnerability (DSV) of GNNs against LMIA. First, with extensive empirical evaluation, we demonstrate the existence of non-negligible DSV under various settings of GNN models and input graphs. Second, by both statistical and causal analysis, we identify the difference between three specific graph structural properties of subgroups as one of the underlying reasons for DSV. Among the three properties, the difference between subgroup density has the largest causal effect on DSV. Third, inspired by the causal analysis, we design a new defense mechanism named FairDefense to mitigate DSV while providing protection against LMIA. At a high level, at each iteration of target model training, FairDefense randomizes the membership of edges in the training graph with a given probability, aiming to reduce the gap between the density of different subgroups for DSV mitigation. Our empirical results demonstrate that FairDefense outperforms the existing defense methods in the trade-off between defense and target model accuracy. More importantly, it offers better DSV mitigation.

     
    more » « less
  4. Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN’s prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN’s prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs. 
    more » « less
  5. Neural networks (NN) has been adopted by brain-computer interfaces (BCI) to encode brain signals acquired using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, it has been found that NN models are vulnerable to adversarial examples, i.e., corrupted samples with imperceptible noise. Once attacked, it could impact medical diagnosis and patients’ quality of life. While early work focuses on interference using external devices at the time of signal acquisition, recent research shifts to collected signals, features, and learning models under various attack modes (e.g., white-, grey-, and black-box). However, existing work only considers single-modality attacks and ignores the topological relationships among different observations, e.g., samples having strong similarities. Different from previous approaches, we introduce graph neural networks (GNN) to multimodal BCI-based classification and explore its performance and robustness against adversarial attacks. This study will evaluate the robustness of NN models with and without graph knowledge on both single and multimodal data. 
    more » « less