- Award ID(s):
- 1909702
- Publication Date:
- NSF-PAR ID:
- 10167748
- Journal Name:
- Proceedings of the SIAM International Conference on Data Mining
- Page Range or eLocation-ID:
- 307-315
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we propose a discriminative variational autoencoder (DVAE) to assist deep learning from data with imbalanced class distributions. DVAE is designed to alleviate the class imbalance by explicitly learning class boundaries between training samples, and uses learned class boundaries to guide the feature learning and sample generation. To learn class boundaries, DVAE learns a latent two-component mixture distributor, conditioned by the class labels, so the latent features can help differentiate minority class vs. majority class samples. In order to balance the training data for deep learning to emphasize on the minority class, we combine DVAE and generative adversarial networks (GAN) to form a unified model, DVAAN, which generates synthetic instances close to the class boundaries as training data to learn latent features and update the model. Experiments and comparisons confirm that DVAAN significantly alleviates the class imbalance and delivers accurate models for deep learning from imbalanced data.
-
Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.
-
Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DRGCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.
-
Producing high-quality labeled data is a challenge in any supervised learning problem, where in many cases, human involvement is necessary to ensure the label quality. However, human annotations are not flawless, especially in the case of a challenging problem. In nontrivial problems, the high disagreement among annotators results in noisy labels, which affect the performance of any machine learning model. In this work, we consider three noise reduction strategies to improve the label quality in the Article-Comment Alignment Problem, where the main task is to classify article-comment pairs according to their relevancy level. The first considered labeling disagreement reduction strategy utilizes annotators' background knowledge during the label aggregation step. The second strategy utilizes user disagreement during the training process. In the third and final strategy, we ask annotators to perform corrections and relabel the examples with noisy labels. We deploy these strategies and compare them to a resampling strategy for addressing the class imbalance, another common supervised learning challenge. These alternatives were evaluated on ACAP, a multiclass text pairs classification problem with highly imbalanced data, where one of the classes represents at most 15% of the dataset's entire population. Our results provide evidence that considered strategies can reduce disagreement betweenmore »
-
Background: Machine learning techniques have been widely used and demonstrate promising performance in many software security tasks such as software vulnerability prediction. However, the class ratio within software vulnerability datasets is often highly imbalanced (since the percentage of observed vulnerability is usually very low). Goal: To help security practitioners address software security data class imbalanced issues and further help build better prediction models with resampled datasets. Method: We introduce an approach called Dazzle which is an optimized version of conditional Wasserstein Generative Adversarial Networks with gradient penalty (cWGAN-GP). Dazzle explores the architecture hyperparameters of cWGAN-GP with a novel optimizer called Bayesian Optimization. We use Dazzle to generate minority class samples to resample the original imbalanced training dataset. Results: We evaluate Dazzle with three software security datasets, i.e., Moodle vulnerable files, Ambari bug reports, and JavaScript function code. We show that Dazzle is practical to use and demonstrates promising improvement over existing state-of-the-art oversampling techniques such as SMOTE (e.g., with an average of about 60% improvement rate over SMOTE in recall among all datasets). Conclusion: Based on this study, we would suggest the use of optimized GANs as an alternative method for security vulnerability data class imbalanced issues.