- Award ID(s):
- 1903823
- Publication Date:
- NSF-PAR ID:
- 10167849
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 491
- Issue:
- 3
- Page Range or eLocation-ID:
- 3767 to 3777
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present optical follow-up observations for candidate clusters in the Clusters Hiding in Plain Sight survey, which is designed to find new galaxy clusters with extreme central galaxies that were misidentified as bright isolated sources in the ROSAT All-Sky Survey catalog. We identify 11 cluster candidates around X-ray, radio, and mid-IR-bright sources, including six well-known clusters, two false associations of foreground and background clusters, and three new candidates, which are observed further with Chandra. Of the three new candidates, we confirm two newly discovered galaxy clusters: CHIPS 1356-3421 and CHIPS 1911+4455. Both clusters are luminous enough to be detected in the ROSAT All-Sky Survey data if not because of their bright central cores. CHIPS 1911+4455 is similar in many ways to the Phoenix cluster, but with a highly disturbed X-ray morphology on large scales. We find the occurrence rate for clusters that would appear to be X-ray-bright point sources in the ROSAT All-Sky Survey (and any surveys with similar angular resolution) to be 2% ± 1%, and the occurrence rate of clusters with runaway cooling in their cores to be <1%, consistent with predictions of chaotic cold accretion. With the number of new groups and clusters predicted to bemore »
-
ABSTRACT We present two catalogues of active galactic nucleus (AGN) candidates selected from the latest data of two all-sky surveys – Data Release 2 of the Gaia mission and the unWISE catalogue of the Wide-field Infrared Survey Explorer (WISE). We train a random forest classifier to predict the probability of each source in the Gaia–unWISE joint sample being an AGN, PRF, based on Gaia astrometric and photometric measurements and unWISE photometry. The two catalogues, which we designate C75 and R85, are constructed by applying different PRF threshold cuts to achieve an overall completeness of 75 per cent (≈90 per cent at GaiaG ≤ 20 mag) and reliability of 85 per cent, respectively. The C75 (R85) catalogue contains 2734 464 (2182 193) AGN candidates across the effective 36 000 deg2 sky, of which ≈0.91 (0.52) million are new discoveries. Photometric redshifts of the AGN candidates are derived by a random forest regressor using Gaia and WISE magnitudes and colours. The estimated overall photometric redshift accuracy is 0.11. Cross-matching the AGN candidates with a sample of known bright cluster galaxies, we identify a high-probability strongly lensed AGN candidate system, SDSS J1326+4806, with a large image separation of 21${^{\prime\prime}_{.}}$06. All the AGN candidates in our catalogues will have ∼5-yr long light curves from Gaiamore »
-
ABSTRACT Rare extragalactic objects can carry substantial information about the past, present, and future universe. Given the size of astronomical data bases in the information era, it can be assumed that very many outlier galaxies are included in existing and future astronomical data bases. However, manual search for these objects is impractical due to the required labour, and therefore the ability to detect such objects largely depends on computer algorithms. This paper describes an unsupervised machine learning algorithm for automatic detection of outlier galaxy images, and its application to several Hubble Space Telescope fields. The algorithm does not require training, and therefore is not dependent on the preparation of clean training sets. The application of the algorithm to a large collection of galaxies detected a variety of outlier galaxy images. The algorithm is not perfect in the sense that not all objects detected by the algorithm are indeed considered outliers, but it reduces the data set by two orders of magnitude to allow practical manual identification. The catalogue contains 147 objects that would be very difficult to identify without using automation.
-
ABSTRACT Low surface brightness (LSB) galaxies are galaxies with central surface brightness fainter than the night sky. Due to the faint nature of LSB galaxies and the comparable sky background, it is difficult to search LSB galaxies automatically and efficiently from large sky survey. In this study, we established the low surface brightness galaxies autodetect (LSBG-AD) model, which is a data-driven model for end-to-end detection of LSB galaxies from Sloan Digital Sky Survey (SDSS) images. Object-detection techniques based on deep learning are applied to the SDSS field images to identify LSB galaxies and estimate their coordinates at the same time. Applying LSBG-AD to 1120 SDSS images, we detected 1197 LSB galaxy candidates, of which 1081 samples are already known and 116 samples are newly found candidates. The B-band central surface brightness of the candidates searched by the model ranges from 22 to 24 mag arcsec−2, quite consistent with the surface brightness distribution of the standard sample. A total of 96.46 per cent of LSB galaxy candidates have an axial ratio (b/a) greater than 0.3, and 92.04 per cent of them have $fracDev\_r$ < 0.4, which is also consistent with the standard sample. The results show that the LSBG-AD model learns the features of LSB galaxiesmore »
-
ABSTRACT We present the steps taken to produce a reliable and complete input galaxy catalogue for the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey (BGS) using the photometric Legacy Survey DR8 DECam. We analyse some of the main issues faced in the selection of targets for the DESI BGS, such as star–galaxy separation, contamination by fragmented stars and bright galaxies. Our pipeline utilizes a new way to select BGS galaxies using Gaia photometry and we implement geometrical and photometric masks that reduce the number of spurious objects. The resulting catalogue is cross-matched with the Galaxy And Mass Assembly (GAMA) survey to assess the completeness of the galaxy catalogue and the performance of the target selection. We also validate the clustering of the sources in our BGS catalogue by comparing with mock catalogues and the Sloan Digital Sky Survey (SDSS) data. Finally, the robustness of the BGS selection criteria is assessed by quantifying the dependence of the target galaxy density on imaging and other properties. The largest systematic correlation we find is a 7 per cent suppression of the target density in regions of high stellar density.