Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. Atz< 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr< 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r< 20.175 color-selected sample (BGS Faint), and a smaller low-zquasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements atz< 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g.,N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter. 
                        more » 
                        « less   
                    
                            
                            Characterizing the target selection pipeline for the Dark Energy Spectroscopic Instrument Bright Galaxy Survey
                        
                    
    
            ABSTRACT We present the steps taken to produce a reliable and complete input galaxy catalogue for the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey (BGS) using the photometric Legacy Survey DR8 DECam. We analyse some of the main issues faced in the selection of targets for the DESI BGS, such as star–galaxy separation, contamination by fragmented stars and bright galaxies. Our pipeline utilizes a new way to select BGS galaxies using Gaia photometry and we implement geometrical and photometric masks that reduce the number of spurious objects. The resulting catalogue is cross-matched with the Galaxy And Mass Assembly (GAMA) survey to assess the completeness of the galaxy catalogue and the performance of the target selection. We also validate the clustering of the sources in our BGS catalogue by comparing with mock catalogues and the Sloan Digital Sky Survey (SDSS) data. Finally, the robustness of the BGS selection criteria is assessed by quantifying the dependence of the target galaxy density on imaging and other properties. The largest systematic correlation we find is a 7 per cent suppression of the target density in regions of high stellar density. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009735
- PAR ID:
- 10299953
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 502
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4328 to 4349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We use subhalo abundance and age distribution matching to create magnitude-limited mock galaxy catalogs atz∼ 0.43, 0.52, and 0.63 withz-band and 3.4μmW1-band absolute magnitudes andr−zandr−W1 colors. From these magnitude-limited mocks, we select mock luminous red galaxy (LRG) samples according to the (r−z)-based (optical) and (r−W1)-based (infrared) selection criteria for the LRG sample of the Dark Energy Spectroscopic Instrument (DESI) survey. Our models reproduce the number densities, luminosity functions, color distributions, and projected clustering of the DESI Legacy Surveys that are the basis for DESI LRG target selection. We predict the halo occupation statistics of both optical and IR DESI LRGs at fixed cosmology and assess the differences between the two LRG samples. We find that IR-based SHAM modeling represents the differences between the optical and IR LRG populations better than using thezband and that age distribution matching overpredicts the clustering of LRGs, implying that galaxy color is uncorrelated with halo age in the LRG regime. Both the optical and IR DESI LRG target selections exclude some of the most luminous galaxies that would appear to be LRGs based on their position on the red sequence in optical color–magnitude space. Both selections also yield populations with a nontrivial LRG–halo connection that does not reach unity for the most massive halos. We find that the IR selection achieves greater completeness (≳90%) than the optical selection across all redshift bins studied.more » « less
- 
            Abstract We use luminous red galaxies selected from the imaging surveys that are being used for targeting by the Dark Energy Spectroscopic Instrument (DESI) in combination with CMB lensing maps from the Planck collaboration to probe the amplitude of large-scale structure over 0.4 ≤ z ≤ 1. Our galaxy sample, with an angular number density of approximately 500 deg -2 over 18,000 sq.deg., is divided into 4 tomographic bins by photometric redshift and the redshift distributions are calibrated using spectroscopy from DESI. We fit the galaxy autospectra and galaxy-convergence cross-spectra using models based on cosmological perturbation theory, restricting to large scales that are expected to be well described by such models. Within the context of ΛCDM, combining all 4 samples and using priors on the background cosmology from supernova and baryon acoustic oscillation measurements, we find S 8 = σ 8 (Ω m /0.3) 0.5 = 0.73 ± 0.03. This result is lower than the prediction of the ΛCDM model conditioned on the Planck data. Our data prefer a slower growth of structure at low redshift than the model predictions, though at only modest significance.more » « less
- 
            null (Ed.)ABSTRACT Determining the distribution of redshifts of galaxies observed by wide-field photometric experiments like the Dark Energy Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak Lensing Source Catalogue to four tomographic bins and to estimate the redshift distributions in these bins. As the first application of these methods to data, we validate that the assumptions made apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematic uncertainties. Our method consists of combining information from three independent likelihood functions: self-organizing map p(z) (sompz), a method for constraining redshifts from galaxy photometry; clustering redshifts (WZ), constraints on redshifts from cross-correlations of galaxy density functions; and shear ratios (SRs), which provide constraints on redshifts from the ratios of the galaxy-shear correlation functions at small scales. Finally, we describe how these independent probes are combined to yield an ensemble of redshift distributions encapsulating our full uncertainty. We calibrate redshifts with combined effective uncertainties of σ〈z〉 ∼ 0.01 on the mean redshift in each tomographic bin.more » « less
- 
            null (Ed.)ABSTRACT We present the results of a new, deeper, and complete search for high-redshift 6.5 < z < 9.3 quasars over 977 deg2 of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven data set providing photometry in all bands Z, Y, J, H, Ks, for all sources detected by VIKING in J. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3, and 5 are the four known z > 6.5 quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-χ2 SED fitting. We find that: (i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag deeper, (ii) the minimum-χ2 SED-fitting method is extremely efficient but reaches 0.7 mag less deep than the BMC method, and selects only one of the four known quasars. We show that BMC candidates, rejected because their photometric SEDs have high χ2 values, include bright examples of galaxies with very strong [O iii] λλ4959,5007 emission in the Y band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint z > 7 quasars, not previously accounted for, and that requires better characterization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    