skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Deep Convolutional Neural Network Phase Unwrapping for Fringe Projection 3D Imaging
Phase unwrapping is a very important step in fringe projection 3D imaging. In this paper, we propose a new neural network for accurate phase unwrapping to address the special needs in fringe projection 3D imaging. Instead of labeling the wrapped phase with integers directly, a two-step training process with the same network configuration is proposed. In the first step, the network (network I) is trained to label only four key features in the wrapped phase. In the second step, another network with same configuration (network II) is trained to label the wrapped phase segments. The advantages are that the dimension of the wrapped phase can be much larger from that of the training data, and the phase with serious Gaussian noise can be correctly unwrapped. We demonstrate the performance and key features of the neural network trained with the simulation data for the experimental data.  more » « less
Award ID(s):
1918260
PAR ID:
10167916
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
13
ISSN:
1424-8220
Page Range / eLocation ID:
3691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Measuring speed is a critical factor to reduce motion artifacts for dynamic scene capture. Phase-shifting methods have the advantage of providing high-accuracy and dense 3D point clouds, but the phase unwrapping process affects the measurement speed. This paper presents an absolute phase unwrapping method capable of using only three speckle-embedded phase-shifted patterns for high-speed three-dimensional (3D) shape measurement on a single-camera, single-projector structured light system. The proposed method obtains the wrapped phase of the object from the speckle-embedded three-step phase-shifted patterns. Next, it utilizes the Semi-Global Matching (SGM) algorithm to establish the coarse correspondence between the image of the object with the embedded speckle pattern and the pre-obtained image of a flat surface with the same embedded speckle pattern. Then, a computational framework uses the coarse correspondence information to determine the fringe order pixel by pixel. The experimental results demonstrated that the proposed method can achieve high-speed and high-quality 3D measurements of complex scenes.

     
    more » « less
  2. This paper presents an absolute phase unwrapping method for high-speed three-dimensional (3D) shape measurement. This method uses three phase-shifted patterns and one binary random pattern on a single-camera, single-projector structured light system. We calculate the wrapped phase from phase-shifted images and determine the coarse correspondence through the digital image correlation (DIC) between the captured binary random pattern of the object and the pre-captured binary random pattern of a flat surface. We then developed a computational framework to determine fringe order number pixel by pixel using the coarse correspondence information. Since only one additional pattern is used, the proposed method can be used for high-speed 3D shape measurement. Experimental results successfully demonstrated that the proposed method can achieve high-speed and high-quality measurement of complex scenes.

     
    more » « less
  3. Abstract

    An invasive biopsy followed by histological staining is the benchmark for pathological diagnosis of skin tumors. The process is cumbersome and time-consuming, often leading to unnecessary biopsies and scars. Emerging noninvasive optical technologies such as reflectance confocal microscopy (RCM) can provide label-free, cellular-level resolution, in vivo images of skin without performing a biopsy. Although RCM is a useful diagnostic tool, it requires specialized training because the acquired images are grayscale, lack nuclear features, and are difficult to correlate with tissue pathology. Here, we present a deep learning-based framework that uses a convolutional neural network to rapidly transform in vivo RCM images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of the epidermis, dermal-epidermal junction, and superficial dermis layers. The network was trained under an adversarial learning scheme, which takes ex vivo RCM images of excised unstained/label-free tissue as inputs and uses the microscopic images of the same tissue labeled with acetic acid nuclear contrast staining as the ground truth. We show that this trained neural network can be used to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma, and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features to traditional histology from the same excised tissue. This application of deep learning-based virtual staining to noninvasive imaging technologies may permit more rapid diagnoses of malignant skin neoplasms and reduce invasive skin biopsies.

     
    more » « less
  4. To alleviate the cost of collecting and annotating large- scale point cloud datasets for 3D scene understanding tasks, we propose an unsupervised learning approach to learn features from unlabeled point cloud ”3D object” dataset by using part contrasting and object clustering with deep graph neural networks (GNNs). In the contrast learn- ing step, all the samples in the 3D object dataset are cut into two parts and put into a ”part” dataset. Then a contrast learning GNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet is applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GNN for cluster- ing learning (ClusterNet) is trained to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn high-level semantic features of objects but probably ignores low-level features, while the ClusterNet improves the quality of learned features by be- ing trained to discover objects that belong to the same se- mantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtained comparable performance to the state-of-the-art unsupervised learning methods that used much more complicated network structures. The code and an extended version of this work is publicly available via: https://github.com/lingzhang1/ContrastNet 
    more » « less
  5. This study compares the accuracy of circular and linear fringe projection profilometry in the aspects of system calibration and 3D reconstruction. We introduce, what we believe to be, a novel calibration method and 3D reconstruction technique using circular and radial fringe patterns. Our approach is compared with the traditional linear phase-shifting method through several 2 × 2 experimental setups. Results indicate that our 3D reconstruction method surpasses the linear phase-shifting approach in performance, although calibration efficiency does not present a superior performance. Further analysis reveals that sensitivity and estimated phase error contribute to the relative underperformance in calibration. This paper offers insights into the potentials and limitations of circular fringe projection profilometry.

     
    more » « less