skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Digital image correlation assisted absolute phase unwrapping

This paper presents an absolute phase unwrapping method for high-speed three-dimensional (3D) shape measurement. This method uses three phase-shifted patterns and one binary random pattern on a single-camera, single-projector structured light system. We calculate the wrapped phase from phase-shifted images and determine the coarse correspondence through the digital image correlation (DIC) between the captured binary random pattern of the object and the pre-captured binary random pattern of a flat surface. We then developed a computational framework to determine fringe order number pixel by pixel using the coarse correspondence information. Since only one additional pattern is used, the proposed method can be used for high-speed 3D shape measurement. Experimental results successfully demonstrated that the proposed method can achieve high-speed and high-quality measurement of complex scenes.

 
more » « less
Award ID(s):
1763689
NSF-PAR ID:
10369974
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
18
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 33022
Size(s):
Article No. 33022
Sponsoring Org:
National Science Foundation
More Like this
  1. Measuring speed is a critical factor to reduce motion artifacts for dynamic scene capture. Phase-shifting methods have the advantage of providing high-accuracy and dense 3D point clouds, but the phase unwrapping process affects the measurement speed. This paper presents an absolute phase unwrapping method capable of using only three speckle-embedded phase-shifted patterns for high-speed three-dimensional (3D) shape measurement on a single-camera, single-projector structured light system. The proposed method obtains the wrapped phase of the object from the speckle-embedded three-step phase-shifted patterns. Next, it utilizes the Semi-Global Matching (SGM) algorithm to establish the coarse correspondence between the image of the object with the embedded speckle pattern and the pre-obtained image of a flat surface with the same embedded speckle pattern. Then, a computational framework uses the coarse correspondence information to determine the fringe order pixel by pixel. The experimental results demonstrated that the proposed method can achieve high-speed and high-quality 3D measurements of complex scenes.

     
    more » « less
  2. We propose a multi-stage calibration method for increasing the overall accuracy of a large-scale structured light system by leveraging the conventional stereo calibration approach using a pinhole model. We first calibrate the intrinsic parameters at a near distance and then the extrinsic parameters with a low-cost large-calibration target at the designed measurement distance. Finally, we estimate pixel-wise errors from standard stereo 3D reconstructions and determine the pixel-wise phase-to-coordinate relationships using low-order polynomials. The calibrated pixel-wise polynomial functions can be used for 3D reconstruction for a given pixel phase value. We experimentally demonstrated that our proposed method achieves high accuracy for a large volume: sub-millimeter within 1200(H) × 800 (V) × 1000(D) mm3.

     
    more » « less
  3. Three-dimensional (3D) shape measurement based on the fringe projection technique has been extensively used for scientific discoveries and industrial practices. Yet, one of the most challenging issues is its limited depth of field (DOF). This paper presents a method to drastically increase DOF of 3D shape measurement technique by employing the focal sweep method. The proposed method employs an electrically tunable lens (ETL) to rapidly sweep the focal plane during image integration and the post deconvolution algorithm to reconstruct focused images for 3D reconstruction. Experimental results demonstrated that our proposed method can achieve high-resolution and high-accuracy 3D shape measurement with greatly improved DOF in real time.

     
    more » « less
  4. Many industries, such as human-centric product manufacturing, are calling for mass customization with personalized products. One key enabler of mass customization is 3D printing, which makes flexible design and manufacturing possible. However, the personalized designs bring challenges for the shape matching and analysis, owing to the high complexity and shape variations. Traditional shape matching methods are limited to spatial alignment and finding a transformation matrix for two shapes, which cannot determine a vertex-to-vertex or feature-to-feature correlation between the two shapes. Hence, such a method cannot measure the deformation of the shape and interested features directly. To measure the deformations widely seen in the mass customization paradigm and address the issues of alignment methods in shape matching, we identify the geometry matching of deformed shapes as a correspondence problem. The problem is challenging due to the huge solution space and nonlinear complexity, which is difficult for conventional optimization methods to solve. According to the observation that the well-established massive databases provide the correspondence results of the treated teeth models, a learning-based method is proposed for the shape correspondence problem. Specifically, a state-of-the-art geometric deep learning method is used to learn the correspondence of a set of collected deformed shapes. Through learning the deformations of the models, the underlying variations of the shapes are extracted and used for finding the vertex-to-vertex mapping among these shapes. We demonstrate the application of the proposed approach in the orthodontics industry, and the experimental results show that the proposed method can predict correspondence fast and accurate, also robust to extreme cases. Furthermore, the proposed method is favorably suitable for deformed shape analysis in mass customization enabled by 3D printing. 
    more » « less
  5. null (Ed.)
    The sky exhibits a unique spatial polarization pattern by scattering the unpolarized sun light. Just like insects use this unique angular pattern to navigate, we use it to map pixels to directions on the sky. That is, we show that the unique polarization pattern encoded in the polarimetric appearance of an object captured under the sky can be decoded to reveal the surface normal at each pixel. We derive a polarimetric reflection model of a diffuse plus mirror surface lit by the sun and a clear sky. This model is used to recover the per-pixel surface normal of an object from a single polarimetric image or from multiple polarimetric images captured under the sky at different times of the day. We experimentally evaluate the accuracy of our shape-from-sky method on a number of real objects of different surface compositions. The results clearly show that this passive approach to fine-geometry recovery that fully leverages the unique illumination made by nature is a viable option for 3D sensing. With the advent of quad-Bayer polarization chips, we believe the implications of our method span a wide range of domains. 
    more » « less