skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unorthodox crystalline drug salts via the reaction of amine-containing drugs with CO 2
Drugs containing amine groups react with CO 2 to form crystalline ammonium carbamates or carbamic acids. In this approach, both the cation and anion of the salt, or the neutral CO 2 adduct, are derived from the parent drug, generating new crystalline versions in a ‘masked’ or prodrug form. It is proposed that this approach may serve as a valuable new tool in engineering the physical properties of drugs for formulation purposes.  more » « less
Award ID(s):
1800122
PAR ID:
10167998
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
90
ISSN:
1359-7345
Page Range / eLocation ID:
13546 to 13549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-component materials are a new trend in catalyst development for electrochemical CO 2 reduction. Understanding and managing the chemical interactions within a complex catalyst structure may unlock new or improved reactivity, but is scientifically challenging. We report the first example of capping ligand-dependent metal–oxide interactions in Au/SnO 2 structures for electrocatalytic CO 2 reduction. Cetyltrimethylammonium bromide capping on the Au nanoparticles enables bifunctional CO 2 reduction where CO is produced at more positive potentials and HCOO − at more negative potentials. With citrate capping or no capping, the Au–SnO 2 interactions steer the selectivity toward H 2 evolution at all potentials. Using electrochemical CO oxidation as a probe reaction, we further confirm that the metal–oxide interactions are strongly influenced by the capping ligand. 
    more » « less
  2. Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1. 
    more » « less
  3. null (Ed.)
    The electrochemical CO 2 reduction reaction (CO 2 RR) to form highly valued chemicals is a sustainable solution to address the environmental issues caused by excessive CO 2 emissions. Generally, it is challenging to achieve high efficiency and selectivity simultaneously in the CO 2 RR due to multi-proton/electron transfer processes and complex reaction intermediates. Among the studied formulations, bimetallic catalysts have attracted significant attention with promising activity, selectivity, and stability. Engineering the atomic arrangement of bimetallic nanocatalysts is a promising strategy for the rational design of structures (intermetallic, core/shell, and phase-separated structures) to improve catalytic performance. This review summarizes the recent advances, challenges, and opportunities in developing bimetallic catalysts for the CO 2 RR. In particular, we firstly introduce the possible reaction pathways on bimetallic catalysts concerning the geometric and electronic properties of intermetallic, core/shell, and phase-separated structures at the atomic level. Then, we critically examine recent advances in crystalline structure engineering for bimetallic catalysts, aiming to establish the correlations between structures and catalytic properties. Finally, we provide a perspective on future research directions, emphasizing current challenges and opportunities. 
    more » « less
  4. Abstract 1D materials, such as nanofibers or nanoribbons are considered as the future ultimate limit of downscaling for modern electrical and electrochemical devices. Here, for the first time, nanofibers of a solid solution transition metal trichalcogenide (TMTC), Nb1‐xTaxS3, are successfully synthesized with outstanding electrical, thermal, and electrochemical characteristics rivaling the performance of the‐state‐of‐the art materials for each application. This material shows nearly unchanged sheet resistance (≈740 Ω sq−1) versus bending cycles tested up to 90 cycles, stable sheet resistance in ambient conditions tested up to 60 days, remarkably high electrical breakdown current density of ≈30 MA cm−2, strong evidence of successive charge density wave transitions, and outstanding thermal stability up to ≈800 K. Additionally, this material demonstrates excellent activity and selectivity for CO2conversion to CO reaching ≈350 mA cm−2at −0.8 V versus RHE with a turnover frequency number of 25. It also exhibits an excellent performance in a high‐rate Li–air battery with the specific capacity of 3000 mAh g−1at a current density of 0.3 mA cm−2. This study uncovers the multifunctionality in 1D TMTC alloys for a wide range of applications and opens a new direction for the design of the next generation low‐dimensional materials. 
    more » « less
  5. Abstract Chalcogel represents a unique class of meso‐ to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion‐exchangeable amorphous chalcogel using a nominal composition of K2CoMo2S10(KCMS) at room temperature is reported. Synchrotron X‐ray pair distribution function (PDF), X‐ray absorption near‐edge structure (XANES), and extended X‐ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+2and Mo4+3clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ions. The ionically bound K+ions remain in the percolating pores of the Co–Mo–S covalent network. XANES of Co K‐edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion‐exchange properties with UO22+ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO22+] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo‐cationic species by integrating a synergy of surface sorption and ion‐exchange. 
    more » « less