Quadrupole-bound anions are negative ions in which their excess electrons are loosely bound by long-range electron-quadrupole attractions. Experimental evidence for quadrupole-bound anions has been scarce; until now, only trans -succinonitrile had been experimentally confirmed to form a quadrupole-bound anion. In this study, we present experimental evidence for a new quadrupole-bound anion. Our combined Rydberg electron transfer/anion photoelectron spectroscopy study demonstrates that the ee conformer of 1,4-dicyanocyclohexane (DCCH) supports a quadrupole-bound anion state, and that the cis -DCCH conformer forms a dipole-bound anion state. The electron binding energies of the quadrupole- and dipole-bound anions are measured as 18 and 115 meV, respectively, both of which are in excellent agreement with theoretical calculations by Sommerfeld.
more »
« less
Excess electrons bound to H 2 S trimer and tetramer clusters
We have prepared the hydrogen sulfide trimer and tetramer anions, (H 2 S) 3 − and (H 2 S) 4 − , measured their anion photoelectron spectra, and applied high-level quantum chemical calculations to interpret the results. The sharp peaks at low electron binding energies in their photoelectron spectra and their diffuse Dyson orbitals are evidence for them both being dipole-bound anions. While the dipole moments of the neutral (H 2 S) 3 and (H 2 S) 4 clusters are small, the excess electron induces structural distortions that enhance the charge-dipolar attraction and facilitate the binding of diffuse electrons.
more »
« less
- Award ID(s):
- 1664182
- PAR ID:
- 10168042
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 6
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 3273 to 3280
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Bonding in the ground state of C $${}_{2}$$ 2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of $$2$$ 2 , $$3$$ 3 , or $$4$$ 4 . Here we report on photoelectron spectra of the C $${}_{2}^{-}$$ 2 − anion, measured at a range of wavelengths using a high-resolution photoelectron imaging spectrometer, which reveal both the ground $${X}^{1}{\Sigma}_{\mathrm{g}}^{+}$$ X 1 Σ g + and first-excited $${a}^{3}{\Pi}_{{\mathrm{u}}}$$ a 3 Π u electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from predominantly $$s$$ s -like ( $$3{\sigma}_{\mathrm{g}}$$ 3 σ g ) and $$p$$ p -like ( $$1{\pi }_{{\mathrm{u}}}$$ 1 π u ) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly $$sp$$ s p -mixed orbitals. This result suggests that the dominant contribution to the dicarbon bonding involves a double-bonded configuration, with 2 $$\pi$$ π bonds and no accompanying $$\sigma$$ σ bond.more » « less
-
Astounding graphitic carbon nitride (g-C 3 N 4 ) nanostructures have attracted huge attention due to their unique electronic structures, suitable band gap, and thermal and chemical stability, and are insinuating as a promising candidate for photocatalytic and energy harvesting applications. The growth of a free-standing film is desirable for widespread electronic devices and electrochemical applications. Here, we present a facile approach to prepare free-standing films (15 mm × 10 mm × 0.5 mm) comprising g-C 3 N 4 nanolayers by the pyrolysis of dicyandiamide (C 2 H 4 N 4 ) utilizing the chemical vapor deposition (CVD) technique. The synthesis is done under low-pressure conditions of argon (∼3 Torr) and at a temperature of 600 °C. The as-synthesized g-C 3 N 4 films are systematically studied for their structural/microstructural characterization using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and UV-visible spectroscopy techniques. The excitation-dependent photoluminescence (PL) spectra of the as-synthesized g-C 3 N 4 film exhibited an intense, stable and broad emission peak in the visible region at ∼459 nm. The emission spectra of free-standing g-C 3 N 4 films show a blue shift and band sharpening compared to that of the g-C 3 N 4 powder.more » « less
-
Selective binding and transport of highly hydrophilic anions is ubiquitous in nature, as anion binding proteins can differentiate between similar anions with over a million-fold efficiency. While comparable selectivity has occasionally been achieved for certain anions using small, artificial receptors, the selective binding of certain anions, such as sulfate in the presence of carbonate, remains a very challenging task. Nanojars of the formula [anion⊂{Cu(OH)(pz)} n ] 2− (pz = pyrazolate; n = 27–33) are totally selective for either CO 3 2− or SO 4 2− over anions such as NO 3 − , ClO 4 − , BF 4 − , Cl − , Br − and I − , but cannot differentiate between the two. We hypothesized that rigidification of the nanojar outer shell by tethering pairs of pyrazole moieties together will restrict the possible orientations of the OH hydrogen-bond donor groups in the anion-binding cavity of nanojars, similarly to anion-binding proteins, and will lead to selectivity. Indeed, by using either homoleptic or heteroleptic nanojars of the general formula [anion⊂Cu n (OH) n (L2–L6) y (pz) n −2 y ] 2− ( n = 26–31) based on a series of homologous ligands HpzCH 2 (CH 2 ) x CH 2 pzH ( x = 0–4; H 2 L2–H 2 L6), selectivity for carbonate (with L2 and with L4–L6/pz mixtures) or for sulfate (with L3) has been achieved. The synthesis of new ligands H 2 L3, H 2 L4 and H 2 L5, X-ray crystal structures of H 2 L4 and the tetrahydropyranyl-protected derivatives (THP) 2 L4 and (THP) 2 L5, synthesis and characterization by electrospray-ionization mass spectrometry (ESI-MS) of carbonate- and sulfate-nanojars derived from ligands H 2 L2–H 2 L6, as well as detailed selectivity studies for CO 3 2− vs. SO 4 2− using these novel nanojars are presented.more » « less
-
Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration.more » « less
An official website of the United States government

