skip to main content


Title: Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm
Cyanobacterial harmful algal blooms (CyanoHABs) are an increasingly common feature of large, eutrophic lakes. Non-N2-fixing CyanoHABs (e.g., Microcystis) appear to be proliferating relative to N2-fixing CyanoHABs in systems receiving increasing nutrient loads. This shift reflects increasing external nitrogen (N) inputs, and a[50-year legacy of excessive phosphorus (P) and N loading. Phosphorus is effectively retained in legacy-impacted systems, while N may be retained or lost to the atmosphere in gaseous forms (e.g., N2, NH3, N2O). Biological control on N inputs versus outputs, or the balance between N2 fixation versus denitrification, favors the latter, especially in lakes undergoing accelerating eutrophication, although denitrification removal efficiency is inhibited by increasing external N loads. Phytoplankton in eutrophic lakes have become more responsive to N inputs relative to P, despite sustained increases in N loading. From a nutrient management perspective, this suggests a need to change the freshwater nutrient limitation and input reduction paradigms; a shift from an exclusive focus on P limitation to a dual N and P colimitation and management strategy. The recent proliferation of toxic non-N2-fixing CyanoHABs, and ever-increasing N and P legacy stores, argues for such a strategy if we are to mitigate eutrophication and CyanoHAB expansion globally.  more » « less
Award ID(s):
1840715
NSF-PAR ID:
10168407
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Hydrobiologia
ISSN:
0018-8158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The concept of lakes “evolving” phosphorus (P) limitation has persisted in limnology despite limited direct evidence. Here, we developed a simple model to broadly characterize nitrogen (N) surpluses and deficits, relative to P, in lakes and compared the magnitude of this imbalance to estimates of N gains and losses through biological N transformations. The model suggested that approximately half of oligotrophic lakes in the U.S.A. had a stoichiometric N deficit, but 72–89% of eutrophic and hypereutrophic lakes, respectively, had a similar N deficit. Although reactive N appeared to accumulate in the most oligotrophic lakes, net denitrification perpetuated the N deficit in more productive lakes. Productive lakes exported reactive N via biological N transformations regardless of their N deficit. The lack of N accumulation through N fixation underscores the need for a modern eutrophication management approach focused on reducing total external nutrient loads, including both N and P.

     
    more » « less
  2. Abstract

    Nitrogen (N) and phosphorus (P) inputs influence algal community structure and function. The rates and ratios of N and P supply, and different N forms (e.g., NO3and NH4), from external loading and internal cycling can be highly seasonal. However, the interaction between seasonality in nutrient supply and algal nutrient limitation remains poorly understood. We examined seasonal variation in nutrient limitation and response to N form in a hyper‐eutrophic reservoir that experiences elevated, but seasonal, nutrient inputs and ratios. External N and P loading is high in spring and declines in summer, when internal loading because more important, reducing loading N:P ratios. Watershed NO3dominates spring N supply, but internal NH4supply becomes important during summer. We quantified how phytoplankton groups (diatoms, chlorophytes, and cyanobacteria) are limited by N or P, and their N form preference (NH4vs. NO3), with weekly experiments (May–October). Phytoplankton were P‐limited in spring, transitioned to N limitation or colimitation (primary N) in summer, and returned to P limitation following fall turnover. Under N limitation (or colimitation), chlorophytes and cyanobacteria were more strongly stimulated by NH4whereas diatoms were often equally, or more strongly, stimulated by NO3addition. Cyanobacteria heterocyte development followed the onset of N‐limiting conditions, with a several week lag time, but heterocyte production did not fully alleviate N‐limitation. We show that phytoplankton groups vary seasonally in limiting nutrient and N form preference, suggesting that dual nutrient management strategies incorporating both N and P, and N form are needed to manage eutrophication.

     
    more » « less
  3. Abstract

    With mounting scientific evidence demonstrating adverse global climate change (GCC) impacts to water quality, water quality policies, such as the Total Maximum Daily Loads (TMDLs) under the U.S. Clean Water Act, have begun accounting for GCC effects in setting nutrient load‐reduction policy targets. These targets generally require nutrient reductions for attaining prescribed water quality standards (WQS) by setting safe levels of nutrient concentrations that curtail potentially harmful cyanobacteria blooms (CyanoHABs). While some governments require WQS to consider climate change, few tools are available to model the complex interactions between climate change and benthic legacy nutrients. We present a novel process‐based integrated assessment model (IAM) that examines the extent to which synergistic relationships between GCC and legacy Phosphorus release could compromise the ability of water quality policies to attain established WQS. The IAM is calibrated for simulating the eutrophic Missisquoi Bay and watershed in Lake Champlain (2001–2050). Water quality impacts of seven P‐reduction scenarios, including the 64.3% reduction specified under the current TMDL, were examined under 17 GCC scenarios. The TMDL WQS of 0.025 mg/L total phosphorus is unlikely to be met by 2035 under the mandated 64.3% reduction for all GCC scenarios. IAM simulations show that the frequency and severity of summer CyanoHABs increased or minimally decreased under most climate and nutrient reduction scenarios. By harnessing IAMs that couple complex process‐based simulation models, the management of water quality in freshwater lakes can become more adaptive through explicit accounting of GCC effects on both the external and internal sources of nutrients.

     
    more » « less
  4. Abstract

    Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long‐term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long‐term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands.

     
    more » « less
  5. null (Ed.)
    Abstract Whether net primary productivity in an aquatic ecosystem is limited by nitrogen (N), limited by phosphorus (P), or co-limited by N & P is determined by the relative supply of N and P to phytoplankton compared to their elemental requirements for primary production, often characterized by the “Redfield” ratio. The supply of these essential nutrients is affected by both external inputs and biogeochemical processes within the ecosystem. In this paper, we examine external sources of nutrients to aquatic systems and how the balance of N to P inputs influences nutrient limitation. For ocean subtropical gyres, a relatively balanced input of N and P relative to the Redfield ratio from deep ocean sources often leads to near co-limitation by N and P. For lakes, the external nutrient inputs come largely from watershed sources, and we demonstrate that on average the N:P ratio for these inputs across the United States is well above that needed by phytoplankton, which may contribute to P limitation in those lake that experience this average nutrient loading. Watershed inputs are also important for estuaries and coastal marine ecosystems, but ocean sources of nutrients are also significant contributors to overall nutrient loads. The ocean-nutrient sources of N and P are very often at or below the Redfield ratio of 16:1 molar, and can be substantially so, particularly in areas where the continental shelf is wide. This large input of coastal ocean nutrients with a low N:P ratio is one factor that may make N limitation more likely in many coastal marine ecosystems than in lakes. 
    more » « less