skip to main content


Title: Observation of Very Short Period Atmospheric Gravity Waves in the Lower Ionosphere Using Very Low Frequency Waves
Award ID(s):
1451142
NSF-PAR ID:
10168484
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
11
ISSN:
2169-9380
Page Range / eLocation ID:
9448 to 9461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research focuses on studying the scattering phenomenon. Scattering electromagnetic waves from a rotating conducting cylinder is investigated when the material of the conducting cylinder is linear, homogeneous, isotropic, and dispersive. This study is an extension of a previous work that investigated the effect of the rotating conducting cylinder on the scattered phase and amplitude, when the material of the conducting cylinder is linear, homogeneous, isotropic, and nondispersive. One of the important result of the previous work is that the Franklin transformation is a proper and more accurate method to calculate the effect of the rotation, and gives more accurate results than Galilean transformation. In this research, the Franklin transformation will be used to investigate the effect of the rotation of the object on the scattered phase and magnitude of the incident waves. The two types of incident waves (E-wave and H-wave) will be considered herein. The simulation results will clearly display the behavior of the scattered phase and magnitude with changes to the incident frequency, the speed of rotation, and the radius of the very good conducting cylinder. Moreover, this result is compared with the result of the previous work (non- dispersive material) to show the behavior of the scattered phase and magnitude when the incident frequency, speed of the rotation and radius of the very good conducting cylinder is changed. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The very‐low frequency (VLF) and low frequency (LF) waves from ground transmitters propagate in the ionospheric waveguide, and a portion of their power leaks to the Earth's inner radiation belt and slot region where it can cause electron precipitation loss. Using Van Allen Probes observations, we perform a survey of the VLF and LF transmitter waves at frequencies from 14 to 200 kHz. The statistical electric and magnetic wave amplitudes and frequency spectra are obtained at 1 < L < 3. Based on a recent study on the propagation of VLF transmitter waves, we divide the total wave power into ducted and unducted portions, and model the wave normal angle of unducted waves with dependences onLshell, magnetic latitude, and wave frequency. At lower frequencies, the unducted waves are launched along the vertical direction and the wave normal angle increases during the propagation until reaching the Gendrin angle; at higher frequencies, the normal angle of unducted waves follows the variation of Gendrin angle. We calculate the bounce‐averaged pitch angle and momentum diffusion coefficients of electrons due to ducted and unducted VLF and LF waves. Unducted and ducted waves cause efficient pitch angle scattering atL = 1.5 and 2.5, respectively. Although the wave power from ground transmitters at frequencies higher than 30 kHz is low, these waves can cause the pitch angle scattering of lower energy (2–200 keV atL = 1.5) electrons, which cannot resonate with the VLF transmitter waves at frequencies below 30 kHz, lightning generated whistlers, or plasmaspheric hiss.

     
    more » « less