skip to main content


Title: Electron Scattering by Very‐Low‐Frequency and Low‐Frequency Waves From Ground Transmitters in the Earth's Inner Radiation Belt and Slot Region
Abstract

The very‐low frequency (VLF) and low frequency (LF) waves from ground transmitters propagate in the ionospheric waveguide, and a portion of their power leaks to the Earth's inner radiation belt and slot region where it can cause electron precipitation loss. Using Van Allen Probes observations, we perform a survey of the VLF and LF transmitter waves at frequencies from 14 to 200 kHz. The statistical electric and magnetic wave amplitudes and frequency spectra are obtained at 1 < L < 3. Based on a recent study on the propagation of VLF transmitter waves, we divide the total wave power into ducted and unducted portions, and model the wave normal angle of unducted waves with dependences onLshell, magnetic latitude, and wave frequency. At lower frequencies, the unducted waves are launched along the vertical direction and the wave normal angle increases during the propagation until reaching the Gendrin angle; at higher frequencies, the normal angle of unducted waves follows the variation of Gendrin angle. We calculate the bounce‐averaged pitch angle and momentum diffusion coefficients of electrons due to ducted and unducted VLF and LF waves. Unducted and ducted waves cause efficient pitch angle scattering atL = 1.5 and 2.5, respectively. Although the wave power from ground transmitters at frequencies higher than 30 kHz is low, these waves can cause the pitch angle scattering of lower energy (2–200 keV atL = 1.5) electrons, which cannot resonate with the VLF transmitter waves at frequencies below 30 kHz, lightning generated whistlers, or plasmaspheric hiss.

 
more » « less
Award ID(s):
1847818
NSF-PAR ID:
10373478
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
6
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Man‐made very low frequency (VLF) transmitter waves play a critical role in energetic electron scattering and precipitation from the inner radiation belt, a type of which is called wisp precipitation. Wisps exhibit dispersive energy‐versus‐Lspectra due to the evolution of electron cyclotron resonance conditions with near‐monochromatic VLF transmitter waves. Here, we report on such observations of inner belt wisp precipitation events with full pitch angle resolution in the energy range of 50 to ∼500 keV as measured by Electron Loss and Fields Investigation (ELFIN) atL < ∼2 between March 2021 and April 2022. Statistical observations (82 events) reveal occasional (18 events) wisp precipitation events with local bounce‐loss‐cone electron flux enhancements, which provide new information compared with flux enhancements measured in previous studies only in the drift loss cone. Based on magnetic field and plasmaspheric density models, quasilinear theory, and detailed pitch angle distributions of wisps from ELFIN, we have estimated the wisp electron bounce‐averaged pitch angle diffusion coefficients to be of the order of 10−4to 10−2 s−1. These are several orders of magnitude larger than the diffusion rates calculated from models using global statistical averages of VLF transmitter wave power. When using our estimated diffusion coefficients to deduce the associated local transmitter wave amplitudes near the equator, based on quasilinear calculations from a transmitter‐induced electron diffusion model, we find these wave amplitudes to be >1 mV/m. Although probable overestimates, such inferred wave amplitudes exceed the theoretical threshold amplitude for nonlinear interactions, strongly suggesting that it is necessary to include nonlinear effects for an accurate evaluation of energetic electron scattering by transmitter waves.

     
    more » « less
  2. Exploring the effects of solar eclipses on radio wave propagation has been an active area of research since the first experiments conducted in 1912. In the first few decades of ionospheric physics, researchers started to explore the natural laboratory of the upper atmosphere. Solar eclipses offered a rare opportunity to undertake an active experiment. The results stimulated much scientific discussion. Early users of radio noticed that propagation was different during night and day. A solar eclipse provided the opportunity to study this day/night effect with much sharper boundaries than at sunrise and sunset, when gradual changes occur along with temperature changes in the atmosphere and variations in the sun angle. Plots of amplitude time series were hypothesized to indicate the recombination rates and reionization rates of the ionosphere during and after the eclipse, though not all time-amplitude plots showed the same curve shapes. A few studies used multiple receivers paired with one transmitter for one eclipse, with a 5:1 ratio as the upper bound. In these cases, the signal amplitude plots generated for data received from the five receive sites for one transmitter varied greatly in shape. Examination of very earliest results shows the difficulty in using a solar eclipse to study propagation; different researchers used different frequencies from different locations at different times. Solar eclipses have been used to study propagation at a range of radio frequencies. For example, the first study in 1912 used a receiver tuned to 5,500 meters, roughly 54.545 kHz. We now have data from solar eclipses at frequencies ranging from VLF through HF, from many different sites with many different eclipse effects. This data has greatly contributed to our understanding of the ionosphere. The solar eclipse over the United States on August 21, 2017 presents an opportunity to have many locations receiving from the same transmitters. Experiments will target VLF, LF, and HF using VLF/LF transmitters, NIST?s WWVB time station at 60 kHz, and hams using their HF frequency allocations. This effort involves Citizen Science, wideband software defined radios, and the use of the Reverse Beacon Network and WSPRnet to collect eclipse-related data. 
    more » « less
  3. Exploring the effects of solar eclipses on radio wave propagation has been an active area of research since the first experiments conducted in 1912. In the first few decades of ionospheric physics, researchers started to explore the natural laboratory of the upper atmosphere. Solar eclipses offered a rare opportunity to undertake an active experiment. The results stimulated much scientific discussion. Early users of radio noticed that propagation was different during night and day. A solar eclipse provided the opportunity to study this day/night effect with much sharper boundaries than at sunrise and sunset, when gradual changes occur along with temperature changes in the atmosphere and variations in the sun angle. Plots of amplitude time series were hypothesized to indicate the recombination rates and reionization rates of the ionosphere during and after the eclipse, though not all time-amplitude plots showed the same curve shapes. A few studies used multiple receivers paired with one transmitter for one eclipse, with a 5:1 ratio as the upper bound. In these cases, the signal amplitude plots generated for data received from the five receive sites for one transmitter varied greatly in shape. Examination of very earliest results shows the difficulty in using a solar eclipse to study propagation; different researchers used different frequencies from different locations at different times. Solar eclipses have been used to study propagation at a range of radio frequencies. For example, the first study in 1912 used a receiver tuned to 5,500 meters, roughly 54.545 kHz. We now have data from solar eclipses at frequencies ranging from VLF through HF, from many different sites with many different eclipse effects. This data has greatly contributed to our understanding of the ionosphere. The solar eclipse over the United States on August 21, 2017 presents an opportunity to have many locations receiving from the same transmitters. Experiments will target VLF, LF, and HF using VLF/LF transmitters, NIST’s WWVB time station at 60 kHz, and hams using their HF frequency allocations. This effort involves Citizen Science, wideband software defined radios, and the use of the Reverse Beacon Network and WSPRnet to collect eclipse-related data. 
    more » « less
  4. Abstract

    Resonant interactions of energetic electrons with electromagnetic whistler‐mode waves (whistlers) contribute significantly to the dynamics of electron fluxes in Earth's outer radiation belt. At low geomagnetic latitudes, these waves are very effective in pitch angle scattering and precipitation into the ionosphere of low equatorial pitch angle, tens of keV electrons and acceleration of high equatorial pitch angle electrons to relativistic energies. Relativistic (hundreds of keV), electrons may also be precipitated by resonant interaction with whistlers, but this requires waves propagating quasi‐parallel without significant intensity decrease to high latitudes where they can resonate with higher energy low equatorial pitch angle electrons than at the equator. Wave propagation away from the equatorial source region in a non‐uniform magnetic field leads to ray divergence from the originally field‐aligned direction and efficient wave damping by Landau resonance with suprathermal electrons, reducing the wave ability to scatter electrons at high latitudes. However, wave propagation can become ducted along field‐aligned density peaks (ducts), preventing ray divergence and wave damping. Such ducting may therefore result in significant relativistic electron precipitation. We present evidence that ducted whistlers efficiently precipitate relativistic electrons. We employ simultaneous near‐equatorial and ground‐based measurements of whistlers and low‐altitude electron precipitation measurements by ELFIN CubeSat. We show that ducted waves (appearing on the ground) efficiently scatter relativistic electrons into the loss cone, contrary to non‐ducted waves (absent on the ground) precipitating onlykeV electrons. Our results indicate that ducted whistlers may be quite significant for relativistic electron losses; they should be further studied statistically and possibly incorporated in radiation belt models.

     
    more » « less
  5. Abstract

    Very-Low-Frequency (VLF) transmitters operate worldwide mostly at frequencies of 10–30 kilohertz for submarine communications. While it has been of intense scientific interest and practical importance to understand whether VLF transmitters can affect the natural environment of charged energetic particles, for decades there remained little direct observational evidence that revealed the effects of these VLF transmitters in geospace. Here we report a radially bifurcated electron belt formation at energies of tens of kiloelectron volts (keV) at altitudes of ~0.8–1.5 Earth radii on timescales over 10 days. Using Fokker-Planck diffusion simulations, we provide quantitative evidence that VLF transmitter emissions that leak from the Earth-ionosphere waveguide are primarily responsible for bifurcating the energetic electron belt, which typically exhibits a single-peak radial structure in near-Earth space. Since energetic electrons pose a potential danger to satellite operations, our findings demonstrate the feasibility of mitigation of natural particle radiation environment.

     
    more » « less