skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions
Abstract. Chemical ionization mass spectrometry (CIMS) techniques have becomeprominent methods for sampling trace gases of relatively low volatility.Such gases are often referred to as being “sticky”, i.e., havingmeasurement artifacts due to interactions between analyte molecules andinstrument walls, given their tendency to interact with wall surfaces viaabsorption or adsorption processes. These surface interactions can impactthe precision, accuracy, and detection limits of the measurements. Weintroduce a low-pressure ion–molecule reaction (IMR) region primarily builtfor performing iodide-adduct ionization, though other adduct ionizationschemes could be employed. The design goals were to improve upon previouslow-pressure IMR versions by reducing impacts of wall interactions at lowpressure while maintaining sufficient ion–molecule reaction times. Chambermeasurements demonstrate that the IMR delay times (i.e., magnitude of wallinteractions) for a range of organic molecules spanning 5 orders ofmagnitude in volatility are 3 to 10 times lower in the new IMR compared toprevious versions. Despite these improvements, wall interactions are stillpresent and need to be understood. To that end, we also introduce aconceptual framework for considering instrument wall interactions and ameasurement protocol to accurately capture the time dependence of analyteconcentrations. This protocol uses short-duration, high-frequencymeasurements of the total background (i.e., fast zeros) during ambientmeasurements as well as during calibration factor determinations. Thisframework and associated terminology applies to any instrument andionization technique that samples compounds susceptible to wallinteractions.  more » « less
Award ID(s):
1652688
PAR ID:
10168494
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
12
Issue:
11
ISSN:
1867-8548
Page Range / eLocation ID:
5829 to 5844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nano-second, capillary discharges (nCDs) are unique plasma sources in their ability to sustain high specific energy deposition ω dep approaching 10 eV/molecule in molecular gases. This high energy loading on short timescales produces both high plasma densities and high densities of molecular exited states. These high densities of electrons and excited states interact with each other during the early afterglow through electron collision quenching and associative ionization. In this paper we discuss results from a two-dimensional computational investigation of a nCD sustained in air at a pressure of 28.5 mbar and with a voltage amplitude 20 kV. Discharges were investigated for two circuit configurations—a floating low voltage electrode and with the low voltage electrode connected to ground through a ballast resistor. The first configuration produced a single ionization wave from the high to low voltage electrode. The second produced converging ionization waves beginning at both electrodes. With a decrease of the tube radius, the velocity of the ionization fronts decreased while the shape of the ionization wave changed from the electron density being distributed smoothly in the radial direction, to being hollow shaped where there is a higher electron density near the tube wall. For sufficiently small tubes, the near-wall maxima merge to have the higher density on the axis of the capillary tube. In the early afterglow, the temporal and radial behavior of the N 2 (C 3 Π u ) density is a sensitive function of ω dep due to electron collision quenching. These trends indicate that starting from ω dep ⩾ 0.3 eV/molecule, it is necessary to take into account interactions of electrons with electronically excited species during the discharge and early afterglow. 
    more » « less
  2. Abstract Plasma stratification has been studied for more than a century. Despite the many experimental studies reported on this topic, theoretical analyses and numerical modeling of this phenomenon have been mostly limited to rare gases. In this work, a one-dimensional fluid model with detailed kinetics of electrons and vibrationally excited molecules is employed to simulate moderate-pressure (i.e. a few Torrs) dc discharge in nitrogen in a 15.5 cm long tube of radius 0.55 cm. The model also considers ambipolar diffusion to account for the radial loss of ions and electrons to the wall. The proposed model predicts self-excited standing striations in nitrogen for a range of discharge currents. The impact of electron transport parameters and reaction rates obtained from a solution of local two-term and a multi-term Boltzmann equation on the predictions are assessed. In-depth kinetic analysis indicates that the striations result from the undulations in electron temperature caused due to the interaction between ionization and vibrational reactions. Furthermore, the vibrationally excited molecules associated with the lower energy levels are found to influence nitrogen plasma stratification and the striation pattern strongly. A balance between ionization processes and electron energy transport allows the formation of the observed standing striations. Simulations were conducted for a range of discharge current densities from ∼0.018 to 0.080 mA cm −2 , for an operating pressure of 0.7 Torr. Parametric studies show that the striation length decreases with increasing discharge current. The predictions from the model are compared against experimental measurements and are found to agree favorably. 
    more » « less
  3. Abstract. Oxygenated organic molecules (OOMs) play an important role in the formation of atmospheric aerosols. Due to various analytical challenges with respect to measuring organic vapors, uncertainties remain regarding the formation and fate of OOMs. The chemical ionization Orbitrap (CI-Orbitrap) mass spectrometer has recently been shown to be a powerful technique that is able to accurately identify gaseous organic compounds due to its greater mass resolution. Here, we present the ammonium-ion-based CI-Orbitrap (NH4+-Orbitrap) as a technique capable of measuring a wide range of gaseous OOMs. The performance of the NH4+-Orbitrap is compared with that of state-of-the-art mass spectrometers, including a nitrate-ion-based chemical ionization atmospheric pressure interface coupled to a time-of-flight mass spectrometer (NO3--LTOF), a new generation of proton transfer reaction-TOF mass spectrometer (PTR3-TOF), and an iodide-based CI-TOF mass spectrometer equipped with a Filter Inlet for Gases and AEROsols (I−-CIMS). The instruments were deployed simultaneously in the Cosmic Leaving OUtdoors Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN) during the CLOUD14 campaign in 2019. Products generated from α-pinene ozonolysis under various experimental conditions were simultaneously measured by the mass spectrometers. The NH4+-Orbitrap was able to identify the widest range of OOMs (i.e., O ≥ 2), from less-oxidized species to highly oxygenated organic molecules (HOMs). Excellent agreement was found between the NH4+-Orbitrap and the NO3--LTOF with respect to characterizing HOMs and with the PTR3-TOF for the less-oxidized monomeric species. OOM concentrations measured by NH4+-Orbitrap were estimated using calibration factors derived from the OOMs with high time-series correlations during the side-by-side measurements. As with the other mass spectrometry techniques used during this campaign, the detection sensitivity of the NH4+-Orbitrap to OOMs is greatly affected by relative humidity, which may be related to changes in ionization efficiency and/or multiphase chemistry. Overall, this study shows that NH4+-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds. As a result, it is now possible to cover the entire range of compounds, which can lead to a better understanding of the oxidation processes. 
    more » « less
  4. Spontaneous oxidation of compounds containing diverse X=Y moieties (e.g., sulfonamides, ketones, esters, sulfones) occurs readily in organic-solvent microdroplets. This surprising phenomenon is proposed to be driven by the generation of an intermediate species [M+H 2 O] +· : a covalent adduct of water radical cation (H 2 O +· ) with the reactant molecule (M). The adduct is observed in the positive ion mass spectrum while its formation in the interfacial region of the microdroplet (i.e., at the air-droplet interface) is indicated by the strong dependence of the oxidation product formation on the spray distance (which reflects the droplet size and consequently the surface-to-volume ratio) and the solvent composition. Importantly, based on the screening of a ca. 21,000-compound library and the detailed consideration of six functional groups, the formation of a molecular adduct with the water radical cation is a significant route to ionization in positive ion mode electrospray, where it is favored in those compounds with X=Y moieties which lack basic groups. A set of model monofunctional systems was studied and in one case, benzyl benzoate, evidence was found for oxidation driven by hydroxyl radical adduct formation followed by protonation in addition to the dominant water radical cation addition process. Significant implications of molecular ionization by water radical cations for oxidation processes in atmospheric aerosols, analytical mass spectrometry and small-scale synthesis are noted. 
    more » « less
  5. Abstract Filming atomic motion within molecules is an active pursuit of molecular physics and quantum chemistry. A promising method is laser-induced Coulomb Explosion Imaging (CEI) where a laser pulse rapidly ionizes many electrons from a molecule, causing the remaining ions to undergo Coulomb repulsion. The ion momenta are used to reconstruct the molecular geometry which is tracked over time (i.e., filmed) by ionizing at an adjustable delay with respect to the start of interatomic motion. Results are distorted, however, by ultrafast motion during the ionizing pulse. We studied this effect in water and filmed the rapid “slingshot” motion that enhances ionization and distorts CEI results. Our investigation uncovered both the geometry and mechanism of the enhancement which may inform CEI experiments in many other polyatomic molecules. 
    more » « less