skip to main content

Title: Striations in moderate pressure dc driven nitrogen glow discharge
Abstract Plasma stratification has been studied for more than a century. Despite the many experimental studies reported on this topic, theoretical analyses and numerical modeling of this phenomenon have been mostly limited to rare gases. In this work, a one-dimensional fluid model with detailed kinetics of electrons and vibrationally excited molecules is employed to simulate moderate-pressure (i.e. a few Torrs) dc discharge in nitrogen in a 15.5 cm long tube of radius 0.55 cm. The model also considers ambipolar diffusion to account for the radial loss of ions and electrons to the wall. The proposed model predicts self-excited standing striations in nitrogen for a range of discharge currents. The impact of electron transport parameters and reaction rates obtained from a solution of local two-term and a multi-term Boltzmann equation on the predictions are assessed. In-depth kinetic analysis indicates that the striations result from the undulations in electron temperature caused due to the interaction between ionization and vibrational reactions. Furthermore, the vibrationally excited molecules associated with the lower energy levels are found to influence nitrogen plasma stratification and the striation pattern strongly. A balance between ionization processes and electron energy transport allows the formation of the observed standing striations. Simulations were more » conducted for a range of discharge current densities from ∼0.018 to 0.080 mA cm −2 , for an operating pressure of 0.7 Torr. Parametric studies show that the striation length decreases with increasing discharge current. The predictions from the model are compared against experimental measurements and are found to agree favorably. « less
Authors:
; ; ;
Award ID(s):
1655280 1707282
Publication Date:
NSF-PAR ID:
10302836
Journal Name:
Journal of Physics D: Applied Physics
Volume:
55
Issue:
8
ISSN:
0022-3727
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striationsmore »in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures.« less
  2. Abstract This article is devoted to the memory of Yuri P Raizer, who passed away in 2021. He left a noticeable trace in gas discharge physics. The principle of minimal power (the state that requires minimal power is most probable) is thoroughly used in his books. Although the fundamental laws of physics do not imply this ad hoc principle, a detailed analysis of underlying phenomena can often reveal why nature prefers this path. Raizer illustrated this principle for plasma stratification, formation of electrode spots, discharge constriction, the shape of an arc channel, etc. We argue that the nonlinearity of equations describing gas discharges can often justify the realization of a plasma state maintained at minimal electric power. This nonlinearity appears because small groups of energetic electrons often control the ionization processes. The number of these electrons depends strongly on the ratio of the electric field to gas density, E / N . Under certain conditions, the ionization rate can also depend nonlinearly on electron density due to stepwise ionization and Coulomb collisions. We use the principle of minimal power to illustrate some of Raizer’s contributions to gas discharge physics from a single point of view. We demonstrate that nonlinearity ofmore »ionization processes in gas discharges can substantiate this principle for plasma stratification. However, striations of s , p , and r types in neon could exist with minimal or no ionization enhancement. This reminds us of Raizer’s warning that applying the minimal power principle could lead to erroneous predictions, and a proper theory is required in each case to justify its use. ‘The phenomenon of striations satisfies the principle of minimal power’ – Yuri Raizer« less
  3. The role of negative hydroxyl ions in liquid-phase plasma discharge formation is investigated using an inhouse modeling framework. Two tunneling sources for electrons are considered—tunneling ionization of water molecules and tunneling detachment of negative hydroxyl ions together with additional reaction steps. The simulations are conducted for a needle-like powered electrode with two different nanosecond rise time voltage profiles—a linear and an exponential rise. Both the profiles have a maximum voltage of 15 kV. The predictions show that the electron detachment, which has a much lower threshold energy requirement, provides a stream of electrons at low applied voltage during the initial rise time. The electrical forces from the electron detachment process generate stronger compression but a weaker expansion regime in the liquid resulting in ∼40% increase in the density and only ∼1% decrease. The electron detachment tunneling process is found to be not limited by the electric field, but rather by the availability of negative hydroxyl ions in the system and ceases when these ions are depleted. The tunnel ionization of water molecules forms the electron wave at a higher applied voltage, but the resulting peak electron number density is typically six orders of magnitude larger than the detachment tunneling. Themore »higher electron number density allows the recycling of depleted negative hydroxyl ions in the system and can reestablish tunneling detachment. In addition, the system experiences a larger variation in density; specifically, a decrease in density due to tunnel ionization. The prediction also shows that irrespective of the initial electron sources (i.e. tunnel ionization or tunnel detachment) the reduced electric field is not sufficient enough to allow electron impact ionization to be active and make a significant contribution. Path flux analysis is conducted to determine the kinetics responsible for the recycling of the negative hydroxyl ions.« less
  4. Context. The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, also known as brightest cluster galaxies (BCGs), is key to our understanding of active galactic nucleus (AGN) feedback, and of the impact of environmental and local effects on star formation. Aims. We investigate the contribution of thermal radiation from the cooling flow surrounding BCGs to the excitation of the filaments. We explore the effects of small levels of extra heating (turbulence), and of metallicity, on the optical and infrared lines. Methods. Using the C LOUDY code, we modeled the photoionization and photodissociation of a slab of gas of optical depth A V  ≤ 30 mag at constant pressure in order to calculate self-consistently all of the gas phases, from ionized gas to molecular gas. The ionizing source is the extreme ultraviolet (EUV) and soft X-ray radiation emitted by the cooling gas. We tested these models comparing their predictions to the rich multi-wavelength observations from optical to submillimeter, now achieved in cool core clusters. Results. Such models of self-irradiated clouds, when reaching sufficiently large A V , lead to a cloud structure with ionized, atomic, and molecular gas phases. These models reproduce most ofmore »the multi-wavelength spectra observed in the nebulae surrounding the BCGs, not only the low-ionization nuclear emission region like optical diagnostics, [O  III ] λ 5007 Å/H β , [N  II ] λ 6583 Å/H α , and ([S  II ] λ 6716 Å+[S  II ] λ 6731 Å)/H α , but also the infrared emission lines from the atomic gas. [O  I ] λ 6300 Å/H α , instead, is overestimated across the full parameter space, except for very low A V . The modeled ro-vibrational H 2 lines also match observations, which indicates that near- and mid-infrared H 2 lines are mostly excited by collisions between H 2 molecules and secondary electrons produced naturally inside the cloud by the interaction between the X-rays and the cold gas in the filament. However, there is still some tension between ionized and molecular line tracers (i.e., CO), which requires optimization of the cloud structure and the density of the molecular zone. The limited range of parameters over which predictions match observations allows us to constrain, in spite of degeneracies in the parameter space, the intensity of X-ray radiation bathing filaments, as well as some of their physical properties like A V or the level of turbulent heating rate. Conclusions. The reprocessing of the EUV and X-ray radiation from the plasma cooling is an important powering source of line emission from filaments surrounding BCGs. C LOUDY self-irradiated X-ray excitation models coupled with a small level of turbulent heating manage to simultaneously reproduce a large number of optical-to-infrared line ratios when all the gas phases (from ionized to molecular) are modeled self-consistently. Releasing some of the simplifications of our model, like the constant pressure, or adding the radiation fields from the AGN and stars, as well as a combination of matter- and radiation-bounded cloud distribution, should improve the predictions of line emission from the different gas phases.« less
  5. Particle charging in the afterglows of non-thermal plasmas typically take place in a non-neutral space charge environment. We model the same by incorporating particle-ion collision rate constant models, developed in prior work by analyzing particle-ion trajectories calculated using Langevin Dynamics simulations, into species transport equations for ions, electrons and charged particles in the afterglow. A scaling analysis of particle charging and additional Langevin Dynamics calculations of the particle-ion collision rate constant are presented to extend the range of applicability to ion electrostatic to thermal energy ratios of 300 and diffusive Knudsen number (that scales inversely with gas pressure) up to 2000. The developed collision rate constant models are first validated by comparing predictions of particle charge against measured values in a stationary, non-thermal DC plasma from past PK-4 campaigns published in Phys. Rev. Lett. 93(8): 085001 and Phys. Rev. E 72(1): 016406). The comparisons reveal excellent agreement within ±35% for particles of radius 0.6,1.0,1.3 μm in the gas pressure range of ~20-150 Pa. The experiments to probe particle charge distributions by Sharma et al. (J. Physics D: Appl. Phys. 53(24): 245204) are modeled using the validated particle-ion collision rate constant models and the calculated charge fractions are compared with measurements.more »The comparisons reveal that the ion/electron concentration and gas temperature in the afterglow critically influence the particle charge and the predictions are generally in qualitative agreement with the measurements. Along with critical assessment of the modeling assumptions, several recommendations are presented for future experimental design to probe charging in afterglows.« less