The aspect ratio-dependent properties of gold nanorods are used in a variety of applications, but the cause of anisotropic nanorod growth remains unclear. Measurements utilizing single-crystal electrodes were collected to determine what additive(s) in pentatwinned gold nanorod syntheses are responsible for facet-selective atomic addition. With cetyltrimethylammonium in the absence of bromide, the rate of atomic addition to Au(100) and Au(111) single crystals was the same, and isotropic nanoparticles were produced. The addition of increasing concentrations of bromide suppressed the rate of atomic addition to Au(100) relative to Au(111) and increased the aspect ratio of gold nanorods. Bromide was a more effective passivator of Au(100) in the absence of cetyltrimethylammonium, indicating cetyltrimethylammonium does not cause facet-selective atomic addition. Cetyltrimethylammonium surfactant is still necessary for gold nanorod growth because it reduces the rate of gold ion reduction and stabilizes suspended nanoparticles against aggregation.
more »
« less
Electrochemical investigations of metal nanostructure growth with single crystals
Control over the nanoscopic structure of a material allows one to tune its properties for a wide variety of applications. Colloidal synthesis has become a convenient way to produce anisotropic metal nanostructures with a desired set of properties, but in most syntheses, the facet-selective surface chemistry causing anisotropic growth is not well-understood. This review highlights the recent use of electrochemical methods and single-crystal electrodes to investigate the roles of organic and inorganic additives in modulating the rate of atomic addition to different crystal facets. Differential capacitance and chronocoulometric techniques can be used to extract thermodynamic data on how additives selectively adsorb, while mixed potential theory can be used to observe the effect of additives on the rate of atomic addition to a specific facet. Results to date indicate that these experimental methods can provide new insights into the role capping agents and halides play in controlling anisotropic growth.
more »
« less
- Award ID(s):
- 1808108
- PAR ID:
- 10168630
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 11
- Issue:
- 45
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 21709 to 21723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemical vapor deposition of CH 4 on Ge(001) can enable anisotropic growth of narrow, semiconducting graphene nanoribbons with predominately smooth armchair edges and high-performance charge transport properties. However, such nanoribbons are not aligned in one direction but instead grow perpendicularly, which is not optimal for integration into high-performance electronics. Here, it is demonstrated that vicinal Ge(001) substrates can be used to synthesize armchair nanoribbons, of which ∼90% are aligned within ±1.5° perpendicular to the miscut. When the growth rate is slow, graphene crystals evolve as nanoribbons. However, as the growth rate increases, the uphill and downhill crystal edges evolve asymmetrically. This asymmetry is consistent with stronger binding between the downhill edge and the Ge surface, for example due to different edge termination as shown by density functional theory calculations. By tailoring growth rate and time, nanoribbons with sub-10 nm widths that exhibit excellent charge transport characteristics, including simultaneous high on-state conductance of 8.0 μS and a high on/off conductance ratio of 570 in field-effect transistors, are achieved. Large-area alignment of semiconducting ribbons with promising charge transport properties is an important step towards understanding the anisotropic nanoribbon growth and integrating these materials into scalable, future semiconductor technologies.more » « less
-
Heng, Jerry (Ed.)The morphological evolution of organic crystals during crystallization depends on the face-specific growth rates. Classical growth rate models relate the face-specific growth rates to the crystal lattice, energy of stable facets, growth mechanism, and supersaturation. The complexities of these models have increased over time to account accurately for solution conditions, the structure of growth units, and their attachment rates. Such advanced growth rate models require several layers of computations to obtain attachment energies of facets, nucleation rates, kink density, and attachment rates. Among these, the most intensive and time-consuming computation is for attachment rates, which require molecular dynamic simulations. This substantially increases the overall computation time to predict the absolute growth rate for even one crystallization condition. Since it is nearly impossible to iterate such a growth rate model, optimization schemes cannot be implemented to identify solution conditions that favor specific crystal growth. To reduce the computational time for attachment rate calculations, we implement a group contribution method (GCM) that relates the properties of functional groups in a molecule to their attachment rates to the crystal lattice, thereby rapidly estimating the growth rates of organic crystals. The process of molecular attachment involves partial desolvation of a solvated molecule, referred to as a transition state, followed by total desolvation via spontaneous attachment to a crystal facet. The first step in GCM is to identify the equilibrium states of fully solvated and partially desolvated solute molecules. The degree of supersaturation dictates the extent of this equilibrium and, thereby, the activation barrier for the growth of crystals, according to transition state theory. Identifying this equilibrium phenomenon allows for capturing the functional-group-specific interactions that depend on molecular motion, which could be related to operating conditions such as temperature and pressure. The stochastic optimization technique with Monte-Carlo sampling allows an efficient optimization problem solution to obtain the group interaction parameters. The GCM approach is first validated for the estimation of growth rates of glutamic acid and L-histidine, and then extended to predict growth rates of alanine and glycine rapidly. The optimized parameters and GCM scheme can be used to estimate growth rates in other crystallization systems.more » « less
-
Abstract Rational synthesis of nanostructures with desired properties critically depends on our understanding of the growth mechanism. In addition to the traditional mechanism involving atomic addition, oriented attachment (OA) has received increasing attention in recent years. Employing nanocrystallites as building blocks, OA offers an important route to anisotropic growth, inclusion of defects, and formation of nanostructures with branched morphology. With a focus on metals, here we offer a brief account of recent progress in understanding OA and how it can be adapted for the colloidal synthesis of nanostructures with diverse compositions and morphologies. We start with a discussion on the current understanding of OA based on computational simulations and experimental studies, followed by typical examples of metal nanostructures produced through OA. Finally, we showcase the catalytic and plasmonic applications enabled by those nanostructures, together with perspectives on the challenges and opportunities.more » « less
-
Abstract Dynamic molecular crystals are an emerging class of crystalline materials that can respond to mechanical stress by dissipating internal strain in a number of ways. Given the serendipitous nature of the discovery of such crystals, progress in the field requires advances in computational methods for the accurate and high–throughput computation of the nanomechanical properties of crystals on specific facets which are exposed to mechanical stress. Here, we develop and apply a new atomistic model for computing the surface elastic moduli of crystals on any set of facets of interest using dispersion–corrected density functional theory (DFT−D) methods. The model was benchmarked against a total of 24 reported nanoindentation measurements from a diverse set of molecular crystals and was found to be generally reliable. Using only the experimental crystal structure of the dietary supplement, L–aspartic acid, the model was subsequently applied under blind test conditions, to correctly predict the growth morphology, facet and nanomechanical properties of L–aspartic acid to within the accuracy of the measured elastic stiffness of the crystal, 24.53±0.56 GPa. This work paves the way for the computational design and experimental realization of other functional molecular crystals with tailor–made mechanical properties.more » « less
An official website of the United States government

