skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bromide Causes Facet-Selective Atomic Addition in Gold Nanorod Syntheses
The aspect ratio-dependent properties of gold nanorods are used in a variety of applications, but the cause of anisotropic nanorod growth remains unclear. Measurements utilizing single-crystal electrodes were collected to determine what additive(s) in pentatwinned gold nanorod syntheses are responsible for facet-selective atomic addition. With cetyltrimethylammonium in the absence of bromide, the rate of atomic addition to Au(100) and Au(111) single crystals was the same, and isotropic nanoparticles were produced. The addition of increasing concentrations of bromide suppressed the rate of atomic addition to Au(100) relative to Au(111) and increased the aspect ratio of gold nanorods. Bromide was a more effective passivator of Au(100) in the absence of cetyltrimethylammonium, indicating cetyltrimethylammonium does not cause facet-selective atomic addition. Cetyltrimethylammonium surfactant is still necessary for gold nanorod growth because it reduces the rate of gold ion reduction and stabilizes suspended nanoparticles against aggregation.  more » « less
Award ID(s):
1808108
PAR ID:
10168596
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemistry of Materials
ISSN:
0897-4756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse non-equilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres (r = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential. We find that conductance is higher in MTAB-capped interfaces, due in large part to the metal-to-ligand coupling provided by the Au-S bond. Alternatively, CTAB does not couple strongly with either the metal or the solvent, and it is largely a barrier to heat transfer, resulting in a much lower interfacial thermal conductance. Through analysis of physical contact between the ligand and the solvent, we find that there is significantly more overlap in the MTAB systems than the CTAB systems, mirroring the trends we observed in the conductance. 
    more » « less
  2. The development of efficient and cost-effective catalysts for hydrogen evolution reaction (HER) is crucial for the advancement of electrochemical water splitting technology. Here, we report a novel synthetic method for the preparation of single-crystalline NiCoP nanorods with tunable aspect ratios using a CO-assisted, trioctylphosphine (TOP)-mediated approach. The introduction of CO gas at different temperatures allows for the control of the nanorod growth, resulting in various aspect ratios while maintaining a hexagonal crystal structure and a composition of 1:1 Ni/Co as NiCoP. Our results demonstrate that the NiCoP nanorods with higher aspect ratios exhibit improved HER activity and stability, with the highest aspect ratio nanorods showing the lowest overpotential and Tafel slope in both acidic and alkaline media. This study highlights the importance of controlling the size and morphology of bimetallic phosphide nanoparticles to optimize their catalytic activity for HER, providing new insights into the design and optimization of nanostructured catalysts for electrochemical water splitting applications. 
    more » « less
  3. Control over the nanoscopic structure of a material allows one to tune its properties for a wide variety of applications. Colloidal synthesis has become a convenient way to produce anisotropic metal nanostructures with a desired set of properties, but in most syntheses, the facet-selective surface chemistry causing anisotropic growth is not well-understood. This review highlights the recent use of electrochemical methods and single-crystal electrodes to investigate the roles of organic and inorganic additives in modulating the rate of atomic addition to different crystal facets. Differential capacitance and chronocoulometric techniques can be used to extract thermodynamic data on how additives selectively adsorb, while mixed potential theory can be used to observe the effect of additives on the rate of atomic addition to a specific facet. Results to date indicate that these experimental methods can provide new insights into the role capping agents and halides play in controlling anisotropic growth. 
    more » « less
  4. We report the fabrication of Ag–Au cuboctahedral nanoboxes enclosed by {100} and {111} facets, respectively, through the orthogonal deposition of Au on two different facets of Ag cuboctahedra. Specifically, we titrate aqueous HAuCl 4 into an aqueous mixture containing Ag cuboctahedra, ascorbic acid, and NaOH (under basic conditions), in the presence of poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium chloride (CTAC), respectively. In the case of PVP, the oxidation of Ag was initiated from the {111} facets of the cuboctahedra through the galvanic replacement reaction between Au( iii ) and Ag, accompanied by the deposition of Au onto the {100} facets. Because the dissolved Ag( i ) ions could react with NaOH to form Ag 2 O on the {111} facets and thus terminate the galvanic reaction, the Au( iii ) ions would be further reduced by the ascorbate monoanion (HAsc − ) to generate Au atoms for their continuing deposition on the {100} facets, converting Ag cuboctahedra to Ag@Au {100} cuboctahedra. Upon the etching of Ag from the core, we obtained Ag–Au cuboctahedral nanoboxes enclosed by {100} facets. In contrast, when CTAC was present, the oxidation of Ag through a galvanic reaction could continuously proceed on {100} facets as the dissolved Ag( i ) ions would react with the excessive amount of Cl − ions derived from CTAC to produce soluble AgCl 2 − ions rather than insoluble Ag 2 O. As a result, the dissolved Ag( i ) and Au( iii ) ions would be co-reduced by HAsc − for the generation of Ag and Au atoms, followed by their co-deposition onto {111} facets for the generation of Ag@Au {111} concave cuboctahedra. After the removal of Ag from the core by etching, we obtained Ag–Au {111} cuboctahedral nanoboxes enclosed by {111} facets. Both samples of cuboctahedral nanoboxes exhibited strong optical absorption in the infrared region. Interestingly, the cuboctahedral nanoboxes enclosed by {111} facets showed significantly enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 relative to their counterparts encased by {100} facets. 
    more » « less
  5. Abstract Understanding the growth pathway of faceted alloy nanoparticles at the atomic level is crucial to morphology control and property tuning. Yet, it remains a challenge due to complexity of the growth process and technical limits of modern characterization tools. We report a combinational use of multiple cutting-edge in situ techniques to study the growth process of octahedral Pt3Ni nanoparticles, which reveal the particle growth and facet formation mechanisms. Our studies confirm the formation of octahedral Pt3Ni initiates from Pt nuclei generation, which is followed by continuous Pt reduction that simultaneously catalyzes Ni reduction, resulting in mixed alloy formation with moderate elemental segregation. Carbon monoxide molecules serve as a facet formation modulator and induce Ni segregation to the surface, which inhibits the (111) facet growth and causes the particle shape to evolve from a spherical cluster to an octahedron as the (001) facet continues to grow. 
    more » « less