skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sys: A Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code
We describe and evaluate an extensible bug-finding tool, Sys, designed to automatically find security bugs in huge codebases, even when easy-to-find bugs have been already picked clean by years of aggressive automatic checking. Sys uses a two-step approach to find such tricky errors. First, it breaks down large---tens of millions of lines---systems into small pieces using user-extensible static checkers to quickly find and mark potential errorsites. Second, it uses user-extensible symbolic execution to deeply examine these potential errorsites for actual bugs. Both the checkers and the system itself are small (6KLOC total). Sys is flexible, because users must be able to exploit domain- or system-specific knowledge in order to detect errors and suppress false positives in real codebases. Sys finds many security bugs (51 bugs, 43 confirmed) in well-checked code---the Chrome and Firefox web browsers---and code that some symbolic tools struggle with---the FreeBSD operating system. Sys's most interesting results include: an exploitable, cash bountied CVE in Chrome that was fixed in seven hours (and whose patch was backported in two days); a trio of bountied bugs with a CVE in Firefox; and a bountied bug in Chrome's audio support.  more » « less
Award ID(s):
1918573
PAR ID:
10168659
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
29th USENIX Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In spite of decades of research in bug detection tools, there is a surprising dearth of ground-truth corpora that can be used to evaluate the efficacy of such tools. Recently, systems such as LAVA and EvilCoder have been proposed to automatically inject bugs into software to quickly generate large bug corpora, but the bugs created so far differ from naturally occurring bugs in a number of ways. In this work, we propose a new automated bug injection system, Apocalypse, that uses formal techniques—symbolic execution, constraint-based program synthesis and model counting—to automatically inject fair (can potentially be discovered by current bug-detection tools), deep (requiring a long sequence of dependencies to be satisfied to fire), uncorrelated (each bug behaving independent of others), reproducible (a trigger input being available) and rare (can be triggered by only a few program inputs) bugs in large software code bases. In our evaluation, we inject bugs into thirty Coreutils programs as well as the TCAS test suite. We find that bugs synthesized by Apocalypse are highly realistic under a variety of metrics, that they do not favor a particular bug-finding strategy (unlike bugs produced by LAVA), and that they are more difficult to find than manually injected bugs, requiring up around 240× more tests to discover with a state-of-the-art symbolic execution tool. 
    more » « less
  2. null (Ed.)
    There is more than a decade-long history of using static analysis to find bugs in systems such as Linux. Most of the existing static analyses developed for these systems are simple checkers that find bugs based on pattern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been employed to improve checkers for systems code due to their complex implementations and poor scalability. In this article, we revisit the scalability problem of interprocedural static analysis from a “Big Data” perspective. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing techniques to solve this traditional programming language problem. We propose Graspan , a disk-based parallel graph system that uses an edge-pair centric computation model to compute dynamic transitive closures on very large program graphs. We develop two backends for Graspan, namely, Graspan-C running on CPUs and Graspan-G on GPUs, and present their designs in the article. Graspan-C can analyze large-scale systems code on any commodity PC, while, if GPUs are available, Graspan-G can be readily used to achieve orders of magnitude speedup by harnessing a GPU’s massive parallelism. We have implemented fully context-sensitive pointer/alias and dataflow analyses on Graspan. An evaluation of these analyses on large codebases written in multiple languages such as Linux and Apache Hadoop demonstrates that their Graspan implementations are language-independent, scale to millions of lines of code, and are much simpler than their original implementations. Moreover, we show that these analyses can be used to uncover many real-world bugs in large-scale systems code. 
    more » « less
  3. Language-level guarantees---like module runtime isolation for WebAssembly (Wasm)---are only as strong as the compiler that produces a final, native-machine-specific executable. The process of lowering language-level constructions to ISA-specific instructions can introduce subtle bugs that violate security guarantees. In this paper, we present Crocus, a system for lightweight, modular verification of instruction-lowering rules within Cranelift, a production retargetable Wasm native code generator. We use Crocus to verify lowering rules that cover WebAssembly 1.0 support for integer operations in the ARM aarch64 backend. We show that Crocus can reproduce 3 known bugs (including a 9.9/10 severity CVE), identify 2 previously-unknown bugs and an underspecified compiler invariant, and help analyze the root causes of a new bug. 
    more » « less
  4. Memory errors are one of the most common vulnerabilities for the popularity of memory unsafe languages including C and C++. Once exploited, it can easily lead to system crash (i.e., denial-of-service attacks) or allow adversaries to fully compromise the victim system. This paper proposes MEDS, a practical memory error detector. MEDS significantly enhances its detection capability by approximating two ideal properties, called an infinite gap and an infinite heap. The approximated infinite gap of MEDS setups large inaccessible memory region between objects (i.e., 4 MB), and the approximated infinite heap allows MEDS to fully utilize virtual address space (i.e., 45-bits memory space). The key idea of MEDS in achieving these properties is a novel user-space memory allocation mechanism, MEDSALLOC. MEDSALLOC leverages a page aliasing mechanism, which allows MEDS to maximize the virtual memory space utilization but minimize the physical memory uses. To highlight the detection capability and practical impacts of MEDS, we evaluated and then compared to Google’s state-of-the-art detection tool, AddressSanitizer. MEDS showed three times better detection rates on four real-world vulnerabilities in Chrome and Firefox. More importantly, when used for a fuzz testing, MEDS was able to identify 68.3% more memory errors than AddressSanitizer for the same amount of a testing time, highlighting its practical aspects in the software testing area. In terms of performance overhead, MEDS slowed down 108% and 86% compared to native execution and AddressSanitizer, respectively, on real-world applications including Chrome, Firefox, Apache, Nginx, and OpenSSL. 
    more » « less
  5. null (Ed.)
    Persistent Memory (PM) can be used by applications to directly and quickly persist any data structure, without the overhead of a file system. However, writing PM applications that are simultaneously correct and efficient is challenging. As a result, PM applications contain correctness and performance bugs. Prior work on testing PM systems has low bug coverage as it relies primarily on extensive test cases and developer annotations. In this paper we aim to build a system for more thoroughly testing PM applications. We inform our design using a detailed study of 63 bugs from popular PM projects. We identify two application-independent patterns of PM misuse which account for the majority of bugs in our study and can be detected automatically. The remaining application-specific bugs can be detected using compact custom oracles provided by developers. We then present AGAMOTTO, a generic and extensible system for discovering misuse of persistent memory in PM applications. Unlike existing tools that rely on extensive test cases or annotations, AGAMOTTO symbolically executes PM systems to discover bugs. AGAMOTTO introduces a new symbolic memory model that is able to represent whether or not PM state has been made persistent. AGAMOTTO uses a state space exploration algorithm, which drives symbolic execution towards program locations that are susceptible to persistency bugs. AGAMOTTO has so far identified 84 new bugs in 5 different PM applications and frameworks while incurring no false positives. 
    more » « less