WebGL is a set of standardized JavaScript APIs for GPU-accelerated graphics. Security of the WebGL interface is paramount because it exposes remote and unsandboxed access to the underlying graphics stack (including the native GL libraries and GPU drivers) in the host OS. Unfortunately, applying state-of-the-art fuzzing techniques to the WebGL interface for vulnerability discovery is challenging because of (1) its huge input state space, and (2) the infeasibility of collecting code coverage across concurrent processes, closed-source libraries, and device drivers in the kernel. Our fuzzing technique, GLeeFuzz, guides input mutation by error messages instead of code coverage. Our key observation is that browsers emit meaningful error messages to aid developers in debugging their WebGL programs. Error messages indicate which part of the input fails (e.g., incomplete arguments, invalid arguments, or unsatisfied dependencies between API calls). Leveraging error messages as feedback, the fuzzer effectively expands coverage by focusing mutation on erroneous parts of the input. We analyze Chrome’s WebGL implementation to identify the dependencies between error-emitting statements and rejected parts of the input, and use this information to guide input mutation. We evaluate our GLeeFuzz prototype on Chrome, Firefox, and Safari on diverse desktop and mobile OSes. We discovered 7 vulnerabilities, 4 in Chrome, 2 in Safari, and 1 in Firefox. The Chrome vulnerabilities allow a remote attacker to freeze the GPU and possibly execute remote code at the browser privilege.
more »
« less
Enhancing Memory Error Detection for Large-Scale Applications and Fuzz Testing
Memory errors are one of the most common vulnerabilities for the popularity of memory unsafe languages including C and C++. Once exploited, it can easily lead to system crash (i.e., denial-of-service attacks) or allow adversaries to fully compromise the victim system. This paper proposes MEDS, a practical memory error detector. MEDS significantly enhances its detection capability by approximating two ideal properties, called an infinite gap and an infinite heap. The approximated infinite gap of MEDS setups large inaccessible memory region between objects (i.e., 4 MB), and the approximated infinite heap allows MEDS to fully utilize virtual address space (i.e., 45-bits memory space). The key idea of MEDS in achieving these properties is a novel user-space memory allocation mechanism, MEDSALLOC. MEDSALLOC leverages a page aliasing mechanism, which allows MEDS to maximize the virtual memory space utilization but minimize the physical memory uses. To highlight the detection capability and practical impacts of MEDS, we evaluated and then compared to Google’s state-of-the-art detection tool, AddressSanitizer. MEDS showed three times better detection rates on four real-world vulnerabilities in Chrome and Firefox. More importantly, when used for a fuzz testing, MEDS was able to identify 68.3% more memory errors than AddressSanitizer for the same amount of a testing time, highlighting its practical aspects in the software testing area. In terms of performance overhead, MEDS slowed down 108% and 86% compared to native execution and AddressSanitizer, respectively, on real-world applications including Chrome, Firefox, Apache, Nginx, and OpenSSL.
more »
« less
- Award ID(s):
- 1718997
- PAR ID:
- 10058601
- Date Published:
- Journal Name:
- Network and Distributed Systems Security (NDSS) Symposium 2018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe and evaluate an extensible bug-finding tool, Sys, designed to automatically find security bugs in huge codebases, even when easy-to-find bugs have been already picked clean by years of aggressive automatic checking. Sys uses a two-step approach to find such tricky errors. First, it breaks down large---tens of millions of lines---systems into small pieces using user-extensible static checkers to quickly find and mark potential errorsites. Second, it uses user-extensible symbolic execution to deeply examine these potential errorsites for actual bugs. Both the checkers and the system itself are small (6KLOC total). Sys is flexible, because users must be able to exploit domain- or system-specific knowledge in order to detect errors and suppress false positives in real codebases. Sys finds many security bugs (51 bugs, 43 confirmed) in well-checked code---the Chrome and Firefox web browsers---and code that some symbolic tools struggle with---the FreeBSD operating system. Sys's most interesting results include: an exploitable, cash bountied CVE in Chrome that was fixed in seven hours (and whose patch was backported in two days); a trio of bountied bugs with a CVE in Firefox; and a bountied bug in Chrome's audio support.more » « less
-
Heap metadata attacks have become one of the primary ways in which attackers exploit memory corruption vulnerabilities. While heap implementation developers have introduced mitigations to prevent and detect corruption, it is still possible for attackers to work around them. In part, this is because these mitigations are created and evaluated without a principled foundation, resulting, in many cases, in complex, inefficient, and ineffective attempts at heap metadata defenses. In this paper, we present HEAPHOPPER, an automated approach, based on model checking and symbolic execution, to analyze the exploitability of heap implementations in the presence of memory corruption. Using HEAPHOPPER, we were able to perform a systematic analysis of different, widely used heap implementations, finding surprising weaknesses in them. Our results show, for instance, how a newly introduced caching mechanism in ptmalloc (the heap allocator implementation used by most of the Linux distributions) significantly weakens its security. Moreover, HEAPHOPPER guided us in implementing and evaluating improvements to the security of ptmalloc, replacing an ineffective recent attempt at the mitigation of a specific form of heap metadata corruption with an effective defense.more » « less
-
Header bidding (HB) is a relatively new online advertising technology that allows a content publisher to conduct a client-side (i.e., from within the end-user’s browser), real-time auction for selling ad slots on a web page. We developed a new browser extension for Chrome and Firefox to observe this in-browser auction process from the user’s perspective. We use real end-user measurements from 393,400 HB auctions to (a) quantify the ad revenue from HB auctions, (b) estimate latency overheads when integrating with ad exchanges and discuss their implications for ad revenue, and (c) break down the time spent in soliciting bids from ad exchanges into various factors and highlight areas for improvement. For the users in our study, we find that HB increases ad revenue for web sites by 28% compared to that in real-time bidding as reported in a prior work. We also find that the latency overheads in HB can be easily reduced or eliminated and outline a few solutions, and pitch the HB platform as an opportunity for privacy-preserving advertising.more » « less
-
With the rapid expansion of the Internet of Things, a vast number of microcontroller-based IoT devices are now susceptible to attacks through the Internet. Vulnerabilities within the firmware are one of the most important attack surfaces. Fuzzing has emerged as one of the most effective techniques for identifying such vulnerabilities. However, when applied to IoT firmware, several challenges arise, including: (1) the inability of firmware to execute properly in the absence of peripherals, (2) the lack of support for exploring input spaces of multiple peripherals, (3) difficulties in instrumenting and gathering feedback, and (4) the absence of a fault detection mechanism. To address these challenges, we have developed and implemented an innovative peripheral-independent hybrid fuzzing tool called . This tool enables testing of microcontroller-based firmware without reliance on specific peripheral hardware. First, a unified virtual peripheral was integrated to model the behaviors of various peripherals, thus enabling the physical devices-agnostic firmware execution. Then, a hybrid event generation approach was used to generate inputs for different peripheral accesses. Furthermore, two-level coverage feedback was collected to optimize the testcase generation. Finally, a plugin-based fault detection mechanism was implemented to identify typical memory corruption vulnerabilities. A Large-scale experimental evaluation has been performed to show ’s effectiveness and efficiency.more » « less
An official website of the United States government

