Abstract Photo‐affinity adsorbents (i.e., translucent matrices functionalized with ligands featuring light‐controlled biorecognition) represent a futuristic technology for purifying labile biologics. In this study, a framework for prototyping photo‐affinity adsorbents comprising azobenzene‐cyclized peptides (ACPs) conjugated to translucent porous beads (ChemMatrix) is presented. This approach combines computational and experimental tools for designing ACPs and investigating their light‐controlled isomerization kinetics and protein biorecognition. First, a modular design for tailoring ACP's conformation, facilitating sequencing, and streamlining the in silico modeling of cis/trans isomers and their differential protein binding is introduced. Then, a spectroscopic system for measuring the photo‐isomerization kinetics of ACPs on ChemMatrix beads is reported; using this device, it is demonstrated that the isomerization at different light intensities is correlated to the cyclization geometry, specifically the energy difference of trans versus cis isomers as calculated in silico. Also, a microfluidic device for sorting ACP‐ChemMatrix beads to select and validate photo‐affinity ligands using Vascular Cell Adhesion Molecule 1 (VCAM‐1) as target protein and cycloAZOB[GVHAKQHRN‐K*]‐G‐ChemMatrix as model photo‐affinity adsorbent is presented. The proposed ACPs exhibit rapid and defined light‐controlled isomerization and biorecognition. Controlling the adsorption and release of VCAM‐1 using light demonstrates the potential of photo‐affinity adsorbents for targets whose biochemical liability poses challenges to its purification.
more »
« less
Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides
The impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins. Light triggers a cis/trans isomerization of the azobenzene, which results in a major structural rearrangement of the cyclic peptide from a non-binding to a binding configuration. Critical to this goal are the abiliy to achieve efficient photo-isomerization under low light dosage and the temporal stability of both cis and trans isomers. We demonstrated our method by designing photo-switchable peptides targeting vascular cell adhesion marker 1 (VCAM1), a cell marker implicated in stem cell function. Starting from a known VCAM1-binding linear peptide, an ensemble of azobenzene-cyclized variants with selective light-controlled binding were identified by combining in silico design with experimental characterization via spectroscopy and surface plasmon resonance. Variant cycloAZOB[G-VHAKQHRN-K] featured rapid, light-controlled binding of VCAM1 (KD,Trans/KD,Cis ~ 130). Biotin-cycloAZOB[G-VHAKQHRN-K] was utilized to label brain microvascular endothelial cells (BMECs), showing co-localization with anti-VCAM1 antibodies in cis configuration and negligible binding in trans configuration.
more »
« less
- PAR ID:
- 10168676
- Date Published:
- Journal Name:
- Journal of Materials Chemistry B
- ISSN:
- 2050-750X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene‐peptide (CAP) ligands for the rapid and discrete photo‐responsive capture and release of blood coagulation factor VIII (FVIII). A predictive method—based on amino acid sequence and molecular architecture of CAPs—is developed to correlate the conformation ofcis/trans‐CAP photo‐isomers to FVIII binding and release. Combined in silico ‐ in vitro analysis of FVIII:peptide interactions guide the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G‐cycloAZOB[Lys‐YYKHLYN‐Lys]‐G on translucent chromatographic beads, features high binding capacity (>6 mg of FVIII per mL of resin) and rapid photo‐isomerization kinetics (τ < 30 s) when exposed to 420–450 nm light at the intensity of 0.1 W cm−2. The adsorbent purifies FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life‐saving biotherapeutics.more » « less
-
Azobenzene-based chiral dopants in cholesteric liquid crystals are of interest since the properties they induce in the liquid crystal could be tuned photochemically. Here, we use a substituted binaphthyl with a halogenated azobenzene as a chiral dopant to induce a photoswitchable cholesteric phase in the nematic 4-n-pentyl-4’-cyanobiphenyl. The azobenzene group chemically attached to the chiral dopant undergoes isomerization from trans to cis upon irradiation with green light (wavelength 535 nm), and from cis to trans upon irradiation with blue light (wavelength 450 nm). The transition between the two isomers causes helicity inversion of the cholesteric, with a left-handed trans isomer and a right-handed cis isomer. We report on the kinetics of photoisomerization of both processes (trans-to-cis and cis-to-trans) in the nematic host by following the pitch evolution over time. We show that the kinetic mechanism corresponds to a two-step process: a first-order isomerization followed by a second-order autocatalytic isomerization. This mechanism differs from the typical first-order kinetics for cis-to-trans or trans-to-cis isomerization in azobenzenes. The autocatalytic process is attributed to interactions between the chiral dopant and the nematic host.more » « less
-
null (Ed.)Through a simple 1,3-cycloaddition reaction, three BODIPY-peptide conjugates that target the extracellular domain of the epidermal growth factor receptor (EGFR) were prepared and their ability for binding to EGFR was investigated. The peptide ligands K(N3)LARLLT and its cyclic analog cyclo(K(N3)larllt, previously shown to have high affinity for binding to the extracellular domain of EGFR, were conjugated to alkynyl-functionalized BODIPY dyes 1 and 2 via a copper-catalyzed click reaction. This reaction produced conjugates 3, 4, and 5 in high yields (70–82%). In vitro studies using human carcinoma HEp2 cells that overexpress EGFR demonstrated high cellular uptake, particularly for the cyclic peptide conjugate 5, and low cytotoxicity in light (~1 J·cm−2) and darkness. Surface plasmon resonance (SPR) results show binding affinity of the three BODIPY-peptide conjugates for EGFR, particularly for 5 bearing the cyclic peptide. Competitive binding studies using three cell lines with different expressions of EGFR show that 5 binds specifically to EGFR-overexpressing colon cancer cells. Among the three conjugates, 5 bearing the cyclic peptide exhibited the highest affinity for binding to the EGFR protein.more » « less
-
Light-induced self-assembly (LISA) is a non-invasive method for tuning material properties. Photoresponsive ligands coated on the surfaces of nanoparticles are often used to achieve LISA. We report simulation studies for a photoresponsive ligand, azobenzene dithiol (ADT), which switches from a trans-to-cis configuration on exposure to ultraviolet light, allowing self-assembly in ADT-coated gold nanoparticles (NPs). This is attributed to a higher dipole moment of cis-ADT over trans-ADT which leads to a dipole–dipole attraction facilitating self-assembly. Singh and Jha [Comput. Theor. Chem., 2021, 1206, 113492] used quantum-chemistry calculations to quantify the interaction energy of a pair of ADT ligands in their cis and trans conformations. The interaction energy between ligands was fit to a potential energy function of the Lennard–Jones (LJ) form having distinct exponents for attractive and repulsive contributions. Using this generalized equation for the ligand–ligand interaction energy, we calculated the total effective interaction energy between a pair of cis as well as trans ADT-coated NPs. Specifically, we calculated the effective interaction energies between cis/trans-NPs using discrete as well as continuous approaches. Given the limitations of experiments in probing individual ligand conformations, we also studied the effect of varying the functional ligand length on the interaction energy between NPs and identified the optimal functional ligand length to capture the steric and conformational effects. Finally, using the effective interaction energy, we obtained a generalized potential energy function, which was applied in Langevin dynamics simulations to capture self-assembly in NPs.more » « less
An official website of the United States government

