skip to main content


Title: Crystals of Benzamide, the First Polymorphous Molecular Compound, Are Helicoidal
Abstract

The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (formII) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X‐ray diffraction reveal a complex lamellar structure of benzamide formIIneedle‐like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non‐classical morphologies.

 
more » « less
NSF-PAR ID:
10168799
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
34
ISSN:
1433-7851
Page Range / eLocation ID:
p. 14593-14601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (formII) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X‐ray diffraction reveal a complex lamellar structure of benzamide formIIneedle‐like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non‐classical morphologies.

     
    more » « less
  2. ABSTRACT

    Crystals of poly(ethylene glycol) grown in thin films of the room temperature ionic liquid (IL) 1‐ethyl‐3‐methylimidazolium ethyl sulfate were examined by electron microscopy as a first step toward exploiting nonvolatile liquids for nanoscale imaging of solvated/dissolved polymeric materials. The crystals were generated by cooling supported (over surfaces of varied polarity) and freestanding solution films to room temperature. This “open,” that is, without liquid cell, microscopy was performed on unstained, as‐grown crystals in the presence of the IL. A variety of nearly two‐dimensional crystal morphologies were observed, including rods, fibers, spherulites, compact faceted single crystals, and interconnected networks, with characteristic sizes ranging from tens of nanometers to tens of microns. Electron diffraction patterns for the rods and fibers revealed single crystal‐like long‐range order. The nature of the IL support little affected the morphology, but film thickness and cooling rate proved important. To assess the role of solvent polarity, crystals were also grown from 1‐ethyl‐3‐methylimidazolium ethyl sulfate mixed with the second IL, the less polar ethyl‐tributyl‐phosphonium diethyl phosphate; here, although the morphologies were similar to those made with pure IL, fibrillar morphologies were more prevalent. © 2020 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 478–486

     
    more » « less
  3. Abstract

    The high‐silica zeolite SSZ‐27 was synthesized using one of the isomers of the organic structure‐directing agent that is known to produce the large‐pore zeolite SSZ‐26 (CON). The structure of the as‐synthesized form was solved using multi‐crystal electron diffraction data. Data were collected on eighteen crystals, and to obtain a high‐quality and complete data set for structure refinement, hierarchical cluster analysis was employed to select the data sets most suitable for merging. The framework structure of SSZ‐27 can be described as a combination of two types of cavities, one of which is shaped like a heart. The cavities are connected through shared 8‐ring windows to create straight channels that are linked together in pairs to form a one‐dimensional channel system. Once the framework structure was known, molecular modelling was used to find the best fitting isomer, and this, in turn, was isolated to improve the synthesis conditions for SSZ‐27.

     
    more » « less
  4. Abstract

    The high‐silica zeolite SSZ‐27 was synthesized using one of the isomers of the organic structure‐directing agent that is known to produce the large‐pore zeolite SSZ‐26 (CON). The structure of the as‐synthesized form was solved using multi‐crystal electron diffraction data. Data were collected on eighteen crystals, and to obtain a high‐quality and complete data set for structure refinement, hierarchical cluster analysis was employed to select the data sets most suitable for merging. The framework structure of SSZ‐27 can be described as a combination of two types of cavities, one of which is shaped like a heart. The cavities are connected through shared 8‐ring windows to create straight channels that are linked together in pairs to form a one‐dimensional channel system. Once the framework structure was known, molecular modelling was used to find the best fitting isomer, and this, in turn, was isolated to improve the synthesis conditions for SSZ‐27.

     
    more » « less
  5. Abstract

    Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.si, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at asingleinterface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.ml). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures.

     
    more » « less