skip to main content


Title: QID: Identifying Mobile Devices via Wireless Charging Fingerprints
Recent years have witnessed the increasing penetration of wireless charging base stations in the workplace and public areas, such as airports and cafeteria. Such an emerging wireless charging infrastructure has presented opportunities for new indoor localization and identification services for mobile users. In this paper, we present QID, the first system that can identify a Qi-compliant mobile device during wireless charging in real-time. QID extracts features from the clock oscillator and control scheme of the power receiver and employs light-weight algorithms to classify the device. QID adopts 2-dimensional motion unit to emulate a variety of multi-coil designs of Qi, which allows for fine-grained device fingerprinting. Our results show that QID achieves high recognition accuracy. With the prevalence of public wireless charging stations, our results also have important implications for mobile user privacy.  more » « less
Award ID(s):
1815274 1943396
NSF-PAR ID:
10168832
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Internet-of-Things Design and Implementation
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have witnessed the increasing penetration of wireless charging base stations in the workplace and public areas, such as airports and cafeterias. Such an emerging wireless charging infrastructure has presented opportunities for new indoor localization and identification services for mobile users. In this paper, we present QID, the first system that can identify a Qi-compliant mobile device during wireless charging in real-time. QID extracts features from the clock oscillator and control scheme of the power receiver and employs light-weight algorithms to classify the device. QID adopts a 2-dimensional motion unit to emulate a variety of multi-coil designs of Qi, which allows for fine-grained device fingerprinting. Our results show that QID achieves high recognition accuracy. With the prevalence of public wireless charging stations, our results also have important implications for mobile user privacy. 
    more » « less
  2. Mobile applications have become widely popular for their ability to access real-time information. In electric vehicle (EV) mobility, these applications are used by drivers to locate charging stations in public spaces, pay for charging transactions, and engage with other users. This activity generates a rich source of data about charging infrastructure and behavior. However, an increasing share of this data is stored as unstructured text—inhibiting our ability to interpret behavior in real-time. In this article, we implement recent transformer-based deep learning algorithms, BERT and XLnet, that have been tailored to automatically classify short user reviews about EV charging experiences. We achieve classification results with a mean accuracy of over 91% and a mean F1 score of over 0.81 allowing for more precise detection of topic categories, even in the presence of highly imbalanced data. Using these classification algorithms as a pre-processing step, we analyze a U.S. national dataset with econometric methods to discover the dominant topics of discourse in charging infrastructure. After adjusting for station characteristics and other factors, we find that the functionality of a charging station is the dominant topic among EV drivers and is more likely to be discussed at points-of-interest with negative user experiences. 
    more » « less
  3. null (Ed.)
    Wireless power transfer (WPT) has been widely used in IoT applications, such as mobile device charging, biomedical implants communication, and RFID field. Maximizing the power transfer efficiency (PTE) becomes one of the most crucial problems for designing the WPT systems. Magnetic induction (MI) beamforming has been proposed recently to maximize the PTE for the near field MIMO WPT systems. However, conventional magnetic beamforming in WPT systems usually requires accurate magnetic channel estimation, both amplitude and phase control of the charging source, which can not be achieved in an extreme environment. In this paper, we propose a novel magnetic induction beamforming scheme in MIMO WPT system using a reconfigurable metasurface. Instead of controlling the source currents or voltages, the reconfigurable metasurface can achieve near field beamforming only by varying the capacitor and resistance in specific coil array units. The beamforming is modeled as a discrete optimization problem and solved by using the Simulate Anneal (SA) method. Through the analytical and COMSOL simulation results, our proposed beamforming scheme can achieve approximately two times PTE of the conventional beamforming method in a 40 cm charging distance. 
    more » « less
  4. Abstract

    We study the problem of planning a tour for an energy‐limited Unmanned Aerial Vehicle (UAV) to visit a set of sites in the least amount of time. We envision scenarios where the UAV can be recharged at a site or along an edge either by landing on stationary recharging stations or on Unmanned Ground Vehicles (UGVs) acting as mobile recharging stations. This leads to a new variant of the Traveling Salesperson Problem (TSP) with mobile recharging stations. We present an algorithm that finds not only the order in which to visit the sites but also when and where to land on the charging stations to recharge. Our algorithm plans tours for the UGVs as well as determines the best locations to place stationary charging stations. We study three variants for charging: Multiple stationary charging stations, single mobile charging station, and multiple mobile charging stations. As the problems we study are nondeterministic polynomial time (NP)‐Hard, we present a practical solution using Generalized TSP that finds the optimal solution that minimizes the total time, subject to the discretization of battery levels. If the UGVs are slower than the UAVs, then the algorithm also finds the minimum number of UGVs required to support the UAV mission such that the UAV is not required to wait for the UGV. Our simulation results show that the running time is acceptable for reasonably sized instances in practice. We evaluate the performance of our algorithm through simulations and proof‐of‐concept field experiments with a fully autonomous system of one UAV and UGV.

     
    more » « less
  5. null (Ed.)
    Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user devices. We consider a mutil-access edge computing (MEC) system with collocated MEC servers and base-stations/access points (BS/AP) supporting multiple users requesting data computation and wireless charging. We propose an integrated solution for wireless charging with computation offloading to satisfy the largest feasible proportion of requested wireless charging while keeping the total energy consumption at the minimum, subject to the MEC-AP transmit power and latency constraints. We propose a novel nested algorithm to jointly perform data partitioning, time allocation, transmit power control and design the optimal energy beamforming for wireless charging. Our resource allocation scheme offers a minimal energy consumption solution compared to other schemes while also delivering a higher amount of wirelessly transferred charge to the users. Even with data offloading, our proposed solution shows significant charging performance, comparable to the case of charging alone, hence showing the effectiveness of performing partial offloading jointly with wireless charging. 
    more » « less