Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation. NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control.
more »
« less
Predictive Modeling of Periodic Behavior for Human-Robot Symbiotic Walking
We propose in this paper Periodic Interaction Primitives - a probabilistic framework that can be used to learn compact models of periodic behavior. Our approach extends existing formulations of Interaction Primitives to periodic movement regimes, i.e., walking. We show that this model is particularly well-suited for learning data-driven, customized models of human walking, which can then be used for generating predictions over future states or for inferring latent, biomechanical variables. We also demonstrate how the same framework can be used to learn controllers for a robotic prosthesis using an imitation learning approach. Results in experiments with human participants indicate that Periodic Interaction Primitives efficiently generate predictions and ankle angle control signals for a robotic prosthetic ankle, with MAE of 2.21 degrees in 0.0008s per inference. Performance degrades gracefully in the presence of noise or sensor fall outs. Compared to alternatives, this algorithm functions 20 times faster and performed 4.5 times more accurately on test subjects.
more »
« less
- Award ID(s):
- 1749783
- PAR ID:
- 10168883
- Date Published:
- Journal Name:
- 2020 IEEE International Conference on Robotics and Automation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modeling individual-specific gait dynamics based on kinematic data could aid development of gait rehabilitation robotics by enabling robots to predict the user’s gait kinematics with and without external inputs, such as mechanical or electrical perturbations. Here we address a current limitation of data driven gait models, which do not yet predict human responses to perturbations. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill during normal gait and during gait perturbed by functional electrical stimulation (FES) to the ankle muscles. Our SLDS models were able to predict the time-evolution of joint kinematics in each of four gait phases, as well as across an entire gait cycle. Because the SLDS dynamics matrices encoded significant coupling across joints, we compared the SLDS predictions to that of a kinematic model, where the joint angles were independent. Gait kinematics predicted by SLDS and kinematic models were similar over time horizons of a few milliseconds, but SLDS models provided better predictions of gait kinematics over time horizons of up to a second. We also demonstrated that SLDS models can infer and predict individual-specific responses to FES during swing phase. As such, SLDS models may be a promising approach for online estimation and control of and human gait dynamics, allowing robotic control strategies to be tailored to an individual’s specific gait coordination patterns.more » « less
-
Modeling individual-specific gait dynamics based on kinematic data could aid the development of gait rehabilitation robotics by enabling robots to predict the user’s gait kinematics with and without external inputs, such as mechanical or electrical perturbations. Here we address a current limitation of data-driven gait models, which do not yet predict human gait dynamics nor responses to perturbations. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill during normal gait and during gait perturbed by functional electrical stimulation (FES) to the ankle muscles. Our SLDS models were able to generate joint angle trajectories in each of four gait phases, as well as across an entire gait cycle, given initial conditions and gait phase information. Because the SLDS dynamics matrices encoded significant coupling across joints that differed across individuals, we compared the SLDS predictions to that of a kinematic model, where the joint angles were independent. Joint angle trajectories generated by SLDS and kinematic models were similar over time horizons of a few milliseconds, but SLDS models provided better predictions of gait kinematics over time horizons of up to a second. We also demonstrated that SLDS models can infer and predict individual-specific responses to FES during swing phase. As such, SLDS models may be a promising approach for online estimation and control of and human gait dynamics, allowing robotic control strategies to be tailored to an individual’s specific gait coordination patterns.more » « less
-
Abstract Robotic assistive or rehabilitative devices are promising aids for people with neurological disorders as they help regain normative functions for both upper and lower limbs. However, it remains challenging to accurately estimate human intent or residual efforts non-invasively when using these robotic devices. In this article, we propose a deep learning approach that uses a brightness mode, that is, B-mode, of ultrasound (US) imaging from skeletal muscles to predict the ankle joint net plantarflexion moment while walking. The designed structure of customized deep convolutional neural networks (CNNs) guarantees the convergence and robustness of the deep learning approach. We investigated the influence of the US imaging’s region of interest (ROI) on the net plantarflexion moment prediction performance. We also compared the CNN-based moment prediction performance utilizing B-mode US and sEMG spectrum imaging with the same ROI size. Experimental results from eight young participants walking on a treadmill at multiple speeds verified an improved accuracy by using the proposed US imaging + deep learning approach for net joint moment prediction. With the same CNN structure, compared to the prediction performance by using sEMG spectrum imaging, US imaging significantly reduced the normalized prediction root mean square error by 37.55% ( $ p $ < .001) and increased the prediction coefficient of determination by 20.13% ( $ p $ < .001). The findings show that the US imaging + deep learning approach personalizes the assessment of human joint voluntary effort, which can be incorporated with assistive or rehabilitative devices to improve clinical performance based on the assist-as-needed control strategy.more » « less
-
Abstract The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot–ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R -squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot–ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system.more » « less
An official website of the United States government

