VR displays (HMDs) with embedded eye trackers could enable better teacher-guided VR applications since eye tracking could provide insights into student’s activities and behavior patterns. We present several techniques to visualize eye-gaze data of the students to help a teacher gauge student attention level. A teacher could then better guide students to focus on the object of interest in the VR environment if their attention drifts and they get distracted or confused.
more »
« less
Exploring Eye Gaze Visualization Techniques for Identifying Distracted Students in Educational VR
Virtual Reality (VR) headsets with embedded eye trackers are appearing as consumer devices (e.g. HTC Vive Eye, FOVE). These devices could be used in VR-based education (e.g., a virtual lab, a virtual field trip) in which a live teacher guides a group of students. The eye tracking could enable better insights into students’ activities and behavior patterns. For real-time insight, a teacher’s VR environment can display student eye gaze. These visualizations would help identify students who are confused/distracted, and the teacher could better guide them to focus on important objects. We present six gaze visualization techniques for a VR-embedded teacher’s view, and we present a user study to compare these techniques. The results suggest that a short particle trail representing eye trajectory is promising. In contrast, 3D heatmaps (an adaptation of traditional 2D heatmaps) for visualizing gaze over a short time span are problematic.
more »
« less
- Award ID(s):
- 1815976
- PAR ID:
- 10168890
- Date Published:
- Journal Name:
- 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
- Page Range / eLocation ID:
- 868 to 877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several purposes, including gaze monitoring, privacy protection, and user authentication/identification. Identifying users is an integral part of many applications due to security and privacy concerns. In this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR researchers explored machine learning on motion-based data (such as body motion, head tracking, eye tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task and many features to train the machine learning model for user identification. We propose a system to identify users utilizing minimal eye-gaze-based features without designing any identification-specific tasks. We collected gaze data from an educational VR application and tested our system with two machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM). Our results show that ML and DL models could identify users with over 98% accuracy with only six simple eye-gaze features. We discuss our results, their implications on security and privacy, and the limitations of our work.more » « less
-
Educational VR may increase engagement and retention compared to traditional learning, for some topics or students. However, a student could still get distracted and disengaged due to stress, mind-wandering, unwanted noise, external alerts, etc. Student eye gaze can be useful for detecting distraction. For example, we previously considered gaze visualizations to help teachers understand student attention to better identify or guide distracted students. However, it is not practical for a teacher to monitor a large numbers of student indicators while teaching. To help filter students based on distraction level, we consider a deep learning approach to detect distraction from gaze data. The key aspects are: (1) we created a labeled eye gaze dataset (3.4M data points) from an educational VR environment, (2) we propose an automatic system to gauge a student's distraction level from gaze data, and (3) we apply and compare three deep neural classifiers for this purpose. A proposed CNN-LSTM classifier achieved an accuracy of 89.8\% for classifying distraction, per educational activity section, into one of three levels.more » « less
-
We present and evaluate methods to redirect desktop inputs such as eye gaze and mouse pointing to a VR-embedded avatar. We use these methods to build a novel interface that allows a desktop user to give presentations in remote VR meetings such as conferences or classrooms. Recent work on such VR meetings suggests a substantial number of users continue to use desktop interfaces due to ergonomic or technical factors. Our approach enables desk-top and immersed users to better share virtual worlds, by allowing desktop-based users to have more engaging or present "cross-reality" avatars. The described redirection methods consider mouse pointing and drawing for a presentation, eye-tracked gaze towards audience members, hand tracking for gesturing, and associated avatar motions such as head and torso movement. A study compared different levels of desktop avatar control and headset-based control. Study results suggest that users consider the enhanced desktop avatar to be human-like and lively and draw more attention than a conventionally animated desktop avatar, implying that our interface and methods could be useful for future cross-reality remote learning tools.more » « less
-
J. Y. C., Chen (Ed.)Controlling and standardizing experiments is imperative for quantitative research methods. With the increase in the availability and quantity of low-cost eye-tracking devices, gaze data are considered as an important user input for quantitative analysis in many social science research areas, especially incorporating with virtual reality (VR) and augmented reality (AR) technologies. This poses new challenges in providing a default interface for gaze data in a common method. This paper propose GazeXR, which focuses on designing a general eye-tracking system interfacing two eye-tracking devices and creating a hardware independent virtual environment. We apply GazeXR to the in-class teaching experience analysis use case using external eye-tracking hardware to collect the gaze data for the gaze track analysis.more » « less
An official website of the United States government

