skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Exploring Eye Gaze Visualization Techniques for Identifying Distracted Students in Educational VR
Virtual Reality (VR) headsets with embedded eye trackers are appearing as consumer devices (e.g. HTC Vive Eye, FOVE). These devices could be used in VR-based education (e.g., a virtual lab, a virtual field trip) in which a live teacher guides a group of students. The eye tracking could enable better insights into students’ activities and behavior patterns. For real-time insight, a teacher’s VR environment can display student eye gaze. These visualizations would help identify students who are confused/distracted, and the teacher could better guide them to focus on important objects. We present six gaze visualization techniques for a VR-embedded teacher’s view, and we present a user study to compare these techniques. The results suggest that a short particle trail representing eye trajectory is promising. In contrast, 3D heatmaps (an adaptation of traditional 2D heatmaps) for visualizing gaze over a short time span are problematic.  more » « less
Award ID(s):
1815976
NSF-PAR ID:
10168890
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Page Range / eLocation ID:
868 to 877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. VR displays (HMDs) with embedded eye trackers could enable better teacher-guided VR applications since eye tracking could provide insights into student’s activities and behavior patterns. We present several techniques to visualize eye-gaze data of the students to help a teacher gauge student attention level. A teacher could then better guide students to focus on the object of interest in the VR environment if their attention drifts and they get distracted or confused. 
    more » « less
  2. Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several purposes, including gaze monitoring, privacy protection, and user authentication/identification. Identifying users is an integral part of many applications due to security and privacy concerns. In this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR researchers explored machine learning on motion-based data (such as body motion, head tracking, eye tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task and many features to train the machine learning model for user identification. We propose a system to identify users utilizing minimal eye-gaze-based features without designing any identification-specific tasks. We collected gaze data from an educational VR application and tested our system with two machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM). Our results show that ML and DL models could identify users with over 98% accuracy with only six simple eye-gaze features. We discuss our results, their implications on security and privacy, and the limitations of our work. 
    more » « less
  3. In the realm of virtual reality (VR) research, the synergy of methodological advancements, technical innovation, and novel applications is paramount. Our work encapsulates these facets in the context of spatial ability assessments conducted within a VR environment. This paper presents a comprehensive and integrated framework of VR, eye-tracking, and electroencephalography (EEG), which seamlessly combines measuring participants’ behavioral performance and simultaneously collecting time-stamped eye tracking and EEG data to enable understanding how spatial ability is impacted in certain conditions and if such conditions demand increased attention and mental allocation. This framework encompasses the measurement of participants’ gaze pattern (e.g., fixation and saccades), EEG data (e.g., Alpha, Beta, Gamma, and Theta wave patterns), and psychometric and behavioral test performance. On the technical front, we utilized the Unity 3D game engine as the core for running our spatial ability tasks by simulating altered conditions of space exploration. We simulated two types of space exploration conditions: (1) microgravity condition in which participants’ idiotropic (body) axis is in statically and dynamically misaligned with their visual axis; and (2) conditions of Martian terrain that offers a visual frame of reference (FOR) but with limited and unfamiliar landmarks objects. We specifically targeted assessing human spatial ability and spatial perception. To assess spatial ability, we digitalized behavioral tests of Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test and integrated them into the VR settings to evaluate participants’ spatial visualization, spatial relations, and spatial orientation ability, respectively. For spatial perception, we applied digitalized versions of size and distance perception tests to measure participants’ subjective perception of size and distance. A suite of C# scripts orchestrated the VR experience, enabling real-time data collection and synchronization. This technical innovation includes the integration of data streams from diverse sources, such as VIVE controllers, eye-tracking devices, and EEG hardware, to ensure a cohesive and comprehensive dataset. A pivotal challenge in our research was synchronizing data from EEG, eye tracking, and VR tasks to facilitate comprehensive analysis. To address this challenge, we employed the Unity interface of the OpenSync library, a tool designed to unify disparate data sources in the fields of psychology and neuroscience. This approach ensures that all collected measures share a common time reference, enabling meaningful analysis of participant performance, gaze behavior, and EEG activity. The Unity-based system seamlessly incorporates task parameters, participant data, and VIVE controller inputs, providing a versatile platform for conducting assessments in diverse domains. Finally, we were able to collect synchronized measurements of participants’ scores on the behavioral tests of spatial ability and spatial perception, their gaze data and EEG data. In this paper, we present the whole process of combining the eye-tracking and EEG workflows into the VR settings and collecting relevant measurements. We believe that our work not only advances the state-of-the-art in spatial ability assessments but also underscores the potential of virtual reality as a versatile tool in cognitive research, therapy, and rehabilitation.

     
    more » « less
  4. We present and evaluate methods to redirect desktop inputs such as eye gaze and mouse pointing to a VR-embedded avatar. We use these methods to build a novel interface that allows a desktop user to give presentations in remote VR meetings such as conferences or classrooms. Recent work on such VR meetings suggests a substantial number of users continue to use desktop interfaces due to ergonomic or technical factors. Our approach enables desk-top and immersed users to better share virtual worlds, by allowing desktop-based users to have more engaging or present "cross-reality" avatars. The described redirection methods consider mouse pointing and drawing for a presentation, eye-tracked gaze towards audience members, hand tracking for gesturing, and associated avatar motions such as head and torso movement. A study compared different levels of desktop avatar control and headset-based control. Study results suggest that users consider the enhanced desktop avatar to be human-like and lively and draw more attention than a conventionally animated desktop avatar, implying that our interface and methods could be useful for future cross-reality remote learning tools. 
    more » « less
  5. Educational VR may increase engagement and retention compared to traditional learning, for some topics or students. However, a student could still get distracted and disengaged due to stress, mind-wandering, unwanted noise, external alerts, etc. Student eye gaze can be useful for detecting distraction. For example, we previously considered gaze visualizations to help teachers understand student attention to better identify or guide distracted students. However, it is not practical for a teacher to monitor a large numbers of student indicators while teaching. To help filter students based on distraction level, we consider a deep learning approach to detect distraction from gaze data. The key aspects are: (1) we created a labeled eye gaze dataset (3.4M data points) from an educational VR environment, (2) we propose an automatic system to gauge a student's distraction level from gaze data, and (3) we apply and compare three deep neural classifiers for this purpose. A proposed CNN-LSTM classifier achieved an accuracy of 89.8\% for classifying distraction, per educational activity section, into one of three levels. 
    more » « less