Educational VR may increase engagement and retention compared to traditional learning, for some topics or students. However, a student could still get distracted and disengaged due to stress, mind-wandering, unwanted noise, external alerts, etc. Student eye gaze can be useful for detecting distraction. For example, we previously considered gaze visualizations to help teachers understand student attention to better identify or guide distracted students. However, it is not practical for a teacher to monitor a large numbers of student indicators while teaching. To help filter students based on distraction level, we consider a deep learning approach to detect distraction from gaze data. The key aspects are: (1) we created a labeled eye gaze dataset (3.4M data points) from an educational VR environment, (2) we propose an automatic system to gauge a student's distraction level from gaze data, and (3) we apply and compare three deep neural classifiers for this purpose. A proposed CNN-LSTM classifier achieved an accuracy of 89.8\% for classifying distraction, per educational activity section, into one of three levels.
Gaze Data Visualizations for Educational VR Applications
VR displays (HMDs) with embedded eye trackers could enable better teacher-guided VR applications since eye tracking could provide insights into student’s activities and behavior patterns. We present several techniques to visualize eye-gaze data of the students to help a teacher gauge student attention level. A teacher could then better guide students to focus on the object of interest in the VR environment if their attention drifts and they get distracted or
confused.
- Award ID(s):
- 1815976
- Publication Date:
- NSF-PAR ID:
- 10168894
- Journal Name:
- ACM Symposium on Spatial User Interaction (SUI) 2019
- Page Range or eLocation-ID:
- 1 to 2
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virtual Reality (VR) headsets with embedded eye trackers are appearing as consumer devices (e.g. HTC Vive Eye, FOVE). These devices could be used in VR-based education (e.g., a virtual lab, a virtual field trip) in which a live teacher guides a group of students. The eye tracking could enable better insights into students’ activities and behavior patterns. For real-time insight, a teacher’s VR environment can display student eye gaze. These visualizations would help identify students who are confused/distracted, and the teacher could better guide them to focus on important objects. We present six gaze visualization techniques for a VR-embedded teacher’s view, and we present a user study to compare these techniques. The results suggest that a short particle trail representing eye trajectory is promising. In contrast, 3D heatmaps (an adaptation of traditional 2D heatmaps) for visualizing gaze over a short time span are problematic.
-
We present and evaluate methods to redirect desktop inputs such as eye gaze and mouse pointing to a VR-embedded avatar. We use these methods to build a novel interface that allows a desktop user to give presentations in remote VR meetings such as conferences or classrooms. Recent work on such VR meetings suggests a substantial number of users continue to use desktop interfaces due to ergonomic or technical factors. Our approach enables desk-top and immersed users to better share virtual worlds, by allowing desktop-based users to have more engaging or present "cross-reality" avatars. The described redirection methods consider mouse pointing and drawing for a presentation, eye-tracked gaze towards audience members, hand tracking for gesturing, and associated avatar motions such as head and torso movement. A study compared different levels of desktop avatar control and headset-based control. Study results suggest that users consider the enhanced desktop avatar to be human-like and lively and draw more attention than a conventionally animated desktop avatar, implying that our interface and methods could be useful for future cross-reality remote learning tools.
-
Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve to support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps usmore »
-
As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different raciallymore »