skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Nonlinear Reduced-Order Model of the Corpus Callosum Under Planar Coronal Excitation
Abstract Traumatic brain injury (TBI) is often associated with microstructural tissue damage in the brain, which results from its complex biomechanical behavior. Recent studies have shown that the deep white matter (WM) region of the human brain is susceptible to being damaged due to strain localization in that region. Motivated by these studies, in this paper, we propose a geometrically nonlinear dynamical reduced order model (ROM) to model and study the dynamics of the deep WM region of the human brain under coronal excitation. In this model, the brain hemispheres were modeled as lumped masses connected via viscoelastic links, resembling the geometry of the corpus callosum (CC). Employing system identification techniques, we determined the unknown parameters of the ROM, and ensured the accuracy of the ROM by comparing its response against the response of an advanced finite element (FE) model. Next, utilizing modal analysis techniques, we determined the energy distribution among the governing modes of vibration of the ROM and concluded that the demonstrated nonlinear behavior of the FE model might be predominantly due to the special geometry of the brain deep WM region. Furthermore, we observed that, for sufficiently high input energies, high frequency harmonics at approximately 45 Hz, were generated in the response of the CC, which, in turn, are associated with high-frequency oscillations of the CC. Such harmonics might potentially lead to strain localization in the CC. This work is a step toward understanding the brain dynamics during traumatic injury.  more » « less
Award ID(s):
1727761 1728186
PAR ID:
10168967
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
142
Issue:
9
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Mild traumatic brain injury (mTBI), or concussion, accounts for 85% of all TBIs. Yet survivors anticipate full cognitive recovery within several months of injury, if not sooner, dependent upon the specific outcome/measure. Recovery is variable and deficits in executive function, e.g., working memory (WM) can persist years post-mTBI. We tested whether cognitive deficits persist in otherwise healthy undergraduates, as a conservative indicator for mTBI survivors at large. We collected WM performance (change detection, n-back tasks) using various stimuli (shapes, locations, letters; aurally presented numbers and letters), and wide-ranging cognitive assessments (e.g., RBANS). We replicated the observation of a general visual WM deficit, with preserved auditory WM. Surprisingly, visual WM deficits were equivalent in participants with a history of mTBI (mean 4.3 years post-injury) and in undergraduates with recent sports-related mTBI (mean 17 days post-injury). In seeking the underlying mechanism of these behavioral deficits, we collected resting state fMRI (rsfMRI) and EEG (rsEEG). RsfMRI revealed significantly reduced connectivity within WM-relevant networks (default mode, central executive, dorsal attention, salience), whereas rsEEG identified no differences (modularity, global efficiency, local efficiency). In summary, otherwise healthy current undergraduates with a history of mTBI present behavioral deficits with evidence of persistent disconnection long after full recovery is expected. 
    more » « less
  2. Abstract Finding the stiffness map of biological tissues is of great importance in evaluating their healthy or pathological conditions. However, due to the heterogeneity and anisotropy of biological fibrous tissues, this task presents challenges and significant uncertainty when characterized only by single-mode loading experiments. In this study, we propose a new theoretical framework to map the stiffness landscape of fibrous tissues, specifically focusing on brain white matter tissue. Initially, a finite element (FE) model of the fibrous tissue was subjected to six loading cases, and their corresponding stress–strain curves were characterized. By employing multiobjective optimization, the material constants of an equivalent anisotropic material model were inversely extracted to best fit all six loading modes simultaneously. Subsequently, large-scale FE simulations were conducted, incorporating various fiber volume fractions and orientations, to train a convolutional neural network capable of predicting the equivalent anisotropic material properties solely based on the fibrous architecture of any given tissue. The proposed method, leveraging brain fiber tractography, was applied to a localized volume of white matter, demonstrating its effectiveness in precisely mapping the anisotropic behavior of fibrous tissue. In the long-term, the proposed method may find applications in traumatic brain injury, brain folding studies, and neurodegenerative diseases, where accurately capturing the material behavior of the tissue is crucial for simulations and experiments. 
    more » « less
  3. Abstract Computational simulations of traumatic brain injury (TBI) are commonly used to advance understanding of the injury–pathology relationship, tissue damage thresholds, and design of protective equipment such as helmets. Both human and animal TBI models have developed substantially over recent decades, partially due to the inclusion of more detailed brain geometry and representation of tissues like cerebral blood vessels. Explicit incorporation of vessels dramatically affects local strain and enables researchers to investigate TBI-induced damage to the vasculature. While some studies have indicated that cerebral arteries are rate-dependent, no published experimentally based, rate-sensitive constitutive models of cerebral arteries exist. In this work, we characterize the mechanical properties of axially failed porcine arteries, both quasi-statically (0.01 s−1) and at high rate (>100 s−1), and propose a rate-sensitive model to fit the data. We find that the quasi-static and high-rate stress–stretch curves become significantly different (p < 0.05) above a stretch of 1.23. We additionally find a significant change in both failure stretch and stress as a result of strain rate. The stress–stretch curve is then modeled as a Holzapfel–Gasser–Ogden material, with a Prony series added to capture the effects of viscoelasticity. Ultimately, this paper demonstrates that rate dependence should be considered in the material properties of cerebral arteries undergoing high strain-rate deformations and provides a ready-to-use model for finite element implementation. 
    more » « less
  4. Abstract The ability to model physiological systems through 3D neural in-vitro systems may enable new treatments for various diseases while lowering the need for challenging animal and human testing. Creating such an environment, and even more impactful, one that mimics human brain tissue under mechanical stimulation, would be extremely useful to study a range of human-specific biological processes and conditions related to brain trauma. One approach is to use human cerebral organoids (hCOs) in-vitro models. hCOs recreate key cytoarchitectural features of the human brain, distinguishing themselves from more traditional 2D cultures and organ-on-a-chip models, as well as in-vivo animal models. Here, we propose a novel approach to emulate mild and moderate traumatic brain injury (TBI) using hCOs that undergo strain rates indicative of TBI. We subjected the hCOs to mild (2 s−1) and moderate (14 s−1) loading conditions, examined the mechanotransduction response, and investigated downstream genomic effects and regulatory pathways. The revealed pathways of note were cell death and metabolic and biosynthetic pathways implicating genes such as CARD9, ENO1, and FOXP3, respectively. Additionally, we show a steeper ascent in calcium signaling as we imposed higher loading conditions on the organoids. The elucidation of neural response to mechanical stimulation in reliable human cerebral organoid models gives insights into a better understanding of TBI in humans. 
    more » « less
  5. Finite element analysis is used to study brain axonal injury and develop Brain White Matter (BWM) models while accounting for both the strain magnitude and the strain rate. These models are becoming more sophisticated and complicated due to the complex nature of the BMW composite structure with different material properties for each constituent phase. State-of-the-art studies focus on employing techniques that combine information about the local axonal directionality in different areas of the brain with diagnostic tools such as Diffusion-Weighted Magnetic Resonance Imaging (Diffusion-MRI). The diffusion-MRI data offers localization and orientation information of axonal tracks which are analyzed in finite element models to simulate virtual loading scenarios. Here, a BMW biphasic material model comprised of axons and neuroglia is considered. The model’s architectural anisotropy represented by a multitude of axonal orientations, that depend on specific brain regions, adds to its complexity. During this effort, we develop a finite element method to merge micro-scale Representative Volume Elements (RVEs) with orthotropic frequency domain viscoelasticity to an integrated macro-scale BWM finite element model, which incorporates local axonal orientation. Previous studies of this group focused on building RVEs that combined different volume fractions of axons and neuroglia and simulating their anisotropic viscoelastic properties. Via the proposed model, we can assign material properties and local architecture on each element based on the information from the orientation of the axonal traces. Consecutively, a BWM finite element model is derived with fully defined both material properties and material orientation. The frequency-domain dynamic response of the BMW model is analyzed to simulate larger scale diagnostic modalities such as MRI and MRE. 
    more » « less