skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impaired visual working memory and reduced connectivity in undergraduates with a history of mild traumatic brain injury
Abstract Mild traumatic brain injury (mTBI), or concussion, accounts for 85% of all TBIs. Yet survivors anticipate full cognitive recovery within several months of injury, if not sooner, dependent upon the specific outcome/measure. Recovery is variable and deficits in executive function, e.g., working memory (WM) can persist years post-mTBI. We tested whether cognitive deficits persist in otherwise healthy undergraduates, as a conservative indicator for mTBI survivors at large. We collected WM performance (change detection, n-back tasks) using various stimuli (shapes, locations, letters; aurally presented numbers and letters), and wide-ranging cognitive assessments (e.g., RBANS). We replicated the observation of a general visual WM deficit, with preserved auditory WM. Surprisingly, visual WM deficits were equivalent in participants with a history of mTBI (mean 4.3 years post-injury) and in undergraduates with recent sports-related mTBI (mean 17 days post-injury). In seeking the underlying mechanism of these behavioral deficits, we collected resting state fMRI (rsfMRI) and EEG (rsEEG). RsfMRI revealed significantly reduced connectivity within WM-relevant networks (default mode, central executive, dorsal attention, salience), whereas rsEEG identified no differences (modularity, global efficiency, local efficiency). In summary, otherwise healthy current undergraduates with a history of mTBI present behavioral deficits with evidence of persistent disconnection long after full recovery is expected.  more » « less
Award ID(s):
1632849 1632738
PAR ID:
10222411
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background: Patients with uncomplicated cases of concussion are thought to fully recover within several months as symptoms resolve. However, at the group level, undergraduates reporting a history of concussion (mean: 4.14 years post-injury) show lasting deficits in visual working memory performance. To clarify what predicts long-term visual working memory outcomes given heterogeneous performance across group members, we investigated factors surrounding the injury, including gender, number of mild traumatic brain injuries, time since mild traumatic brain injury (mTBI), loss of consciousness (LOC) (yes, no), and mTBI etiology (non-sport, team sport, high impact sport, and individual sport). We also collected low-density resting state electroencephalogram to test whether spectral power was correlated with performance. Aim: The purpose of this study was to identify predictors for poor visual working memory outcomes in current undergraduates with a history of concussion. Methods: Participants provided a brief history of their injury and symptoms. Participants also completed an experimental visual working memory task. Finally, low-density resting-state electroencephalogram was collected. Results: The key observation was that LOC at the time of injury predicted superior visual working memory years later. In contrast, visual working memory performance was not predicted by other factors, including etiology, high impact sports, or electroencephalogram spectral power. Conclusions: Visual working memory deficits are apparent at the group level in current undergraduates with a history of concussion. LOC at the time of concussion predicts less impaired visual working memory performance, whereas no significant links were associated with other factors. One interpretation is that after LOC, patients are more likely to seek medical advice than without LOC. Relevance for patients: Concussion is a head injury associated with future cognitive changes in some people. Concussion should be taken seriously, and medical treatment sought whenever a head injury occurs. 
    more » « less
  2. Ụbụrụ is an executive function computerized rehabilitation application specifically designed for mild Traumatic Brain Injury (mTBI) individuals. Ụbụrụ utilizes serious games to train cognitive flexibility, planning, and organization. This paper explores the rationale and components behind the alpha stage of the application’s development, and its first design iteration. Currently, individuals with a history of mTBI have limited rehabilitation options as a result of lack of knowledge in terms of available services, access, time, or financial and insurance constraints. Due to the invisible nature of mTBIs, perception of injury severity is diminished, individuals are not properly equipped with how to proceed forward with rehabilitation, and awareness of injury can be inadvertently compromised. The intention behind the Ụbụrụ application is to be a computerized cognitive rehabilitation alternative and additive when limitations such as time, finances, or insurance exist. 
    more » « less
  3. null (Ed.)
    Have you ever felt “groggy” after hitting your head? We are learning more about how important it is to protect your brain from injuries, such as concussion. Concussion is also called mild traumatic brain injury (mTBI). After an mTBI, most people think patients recover within a few weeks. We noticed that some college students who had had an mTBI were struggling to remember information for a few seconds. This ability is called working memory and we need it for most thinking jobs, like remembering the name of someone you just met, or what you wanted to get from the fridge. In our experiments, we tested different groups of students to see if they could remember things for 1 s, like the color of squares. Participants with a history of mTBI (on average, more than 4 years after injury) performed worse than students without a history of mTBI. The take-home message is that there can be lasting effects of mTBI, even years after it happens. 
    more » « less
  4. In the past 20 years, white matter (WM) microstructure has been studied predominantly using diffusion tensor imaging (DTI). Decreases in fractional anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been consistently reported in healthy aging and neurodegenerative diseases. To date, DTI parameters have been studied individually (e.g., only FA) and separately (i.e., without using the joint information across them). This approach gives limited insights into WM pathology, increases the number of multiple comparisons, and yields inconsistent correlations with cognition. To take full advantage of the information in a DTI dataset, we present the first application of symmetric fusion to study healthy aging WM. This data-driven approach allows simultaneous examination of age differences in all four DTI parameters. We used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) in cognitively healthy adults (age 20–33,n = 51 and age 60–79,n = 170). Four-way mCCA + jICA yielded one high-stability modality-shared component with co-variant patterns of age differences in RD and AD in the corpus callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading parameters) showed correlations with processing speed and fluid abilities that were not detected by unimodal analyses. In sum, mCCA + jICA allows data-driven identification of cognitively relevant multimodal components within the WM. The presented method should be further extended to clinical samples and other MR techniques (e.g., myelin water imaging) to test the potential of mCCA+jICA to discriminate between different WM disease etiologies and improve the diagnostic classification of WM diseases. 
    more » « less
  5. Traumatic brain injury (TBI) is a leading cause of long-term neurological disability in the world and the strongest environmental risk factor for the development of dementia. Even mild TBI (resulting from concussive injuries) is associated with a greater than twofold increase in the risk of dementia onset. Little is known about the cellular mechanisms responsible for the progression of long-lasting cognitive deficits. The integrated stress response (ISR), a phylogenetically conserved pathway involved in the cellular response to stress, is activated after TBI, and inhibition of the ISR—even weeks after injury—can reverse behavioral and cognitive deficits. However, the cellular mechanisms by which ISR inhibition restores cognition are unknown. Here, we used longitudinal two-photon imaging in vivo after concussive injury in mice to study dendritic spine dynamics in the parietal cortex, a brain region involved in working memory. Concussive injury profoundly altered spine dynamics measured up to a month after injury. Strikingly, brief pharmacological treatment with the drug-like small-molecule ISR inhibitor ISRIB entirely reversed structural changes measured in the parietal cortex and the associated working memory deficits. Thus, both neural and cognitive consequences of concussive injury are mediated in part by activation of the ISR and can be corrected by its inhibition. These findings suggest that targeting ISR activation could serve as a promising approach to the clinical treatment of chronic cognitive deficits after TBI. 
    more » « less