skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum : Paraburkholderia agricolaris sp. nov., Paraburkholderia hayleyella sp. nov., and Paraburkholderia bonniea sp. nov
Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum . The new species P. agricolaris sp. nov. , P. hayleyella sp. nov. , and P. bonniea sp. nov . are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum . We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship . All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses.  more » « less
Award ID(s):
1656756 1753743
PAR ID:
10169030
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
8
ISSN:
2167-8359
Page Range / eLocation ID:
e9151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A detailed evaluation of eight bacterial isolates from floral nectar and animal visitors to flowers shows evidence that they represent three novel species in the genus Acinetobacter . Phylogenomic analysis shows the closest relatives of these new isolates are Acinetobacter apis , Acinetobacter boissieri and Acinetobacter nectaris , previously described species associated with floral nectar and bees, but high genome-wide sequence divergence defines these isolates as novel species. Pairwise comparisons of the average nucleotide identity of the new isolates compared to known species is extremely low (<83 %), thus confirming that these samples are representative of three novel Acinetobacter species, for which the names Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov. are proposed. The respective type strains are SCC477 T (=TSD-214 T =LMG 31655 T ), B10A T (=TSD-213 T =LMG 31702 T ) and EC24 T (=TSD-215 T =LMG 31703 T =DSM 111781 T ). 
    more » « less
  2. Abstract Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host. 
    more » « less
  3. A growing interest in fungi that occur within symptom-less plants and lichens (endophytes) has uncovered previously uncharacterized species in diverse biomes worldwide. In many temperate and boreal forests, endophytic Coniochaeta (Sacc.) Cooke ( Coniochaetaceae , Coniochaetales, Sordariomycetes , Ascomycota ) are commonly isolated on standard media, but rarely are characterized. We examined 26 isolates of Coniochaeta housed at the Gilbertson Mycological Herbarium. The isolates were collected from healthy photosynthetic tissues of conifers, angiosperms, mosses and lichens in Canada, Sweden and the United States. Their barcode sequences (nuclear ribosomal internal transcribed spacer and 5.8S; ITS rDNA) were ≤97% similar to any documented species available through GenBank. Phylogenetic analyses based on two loci (ITS rDNA and translation elongation factor 1-alpha) indicated that two isolates represented Coniochaeta cymbiformispora , broadening the ecological niche and geographic range of a species known previously from burned soil in Japan. The remaining 24 endophytes represented three previously undescribed species that we characterize here: Coniochaeta elegans sp. nov., Coniochaeta montana sp. nov. and Coniochaeta nivea sp. nov. Each has a wide host range, including lichens, bryophytes and vascular plants. C. elegans sp. nov. and C. nivea sp. nov. have wide geographic ranges. C. montana sp. nov. occurs in the Madrean biome of Arizona (USA), where it is sympatric with the other species described here. All three species display protease, chitinase and cellulase activity in vitro . Overall, this study provides insight into the ecological and evolutionary diversity of Coniochaeta and suggests that these strains may be amenable for studies of traits relevant to a horizontally transmitted, symbiotic lifestyle. 
    more » « less
  4. Surveys of Hawaiian macroalgae over the past 15 years have yielded numerous specimens representing species new to science. Calliblepharis yasutakei sp. nov. is here described based on a plant collected at a depth of 98 m from Kapou, Papahânaumokuâkea Marine National Monument, Hawaiʻi. Phylogenetic analyses of three molecular markers (COI, rbcL, and SSU) and analyses of morphological features were used to describe the new species in the family Cystocloniaceae. Calliblepharis yasutakei sp. nov. grouped with C. fimbriata, C. rammediorum, C. occidentalis and C. jolyi in a clade with full support for the rbcL analysis, representing a distinct lineage within the genus. Phylogenetic and vegetative morphological comparisons demonstrated that the new Hawaiian species is most closely related to C. rammediorum from Israel (rbcL similarity of 96.3%), although no female reproductive structures were found to allow a more comprehensive comparison. In order to determine whether C. yasutakei represents the first confirmed report of the genus Calliblepharis in the Hawaiian Islands, phylogenetic and morphological analysis of the Hawaiian Hypnea saidana (=Calliblepharis saidana) specimen accessioned at the Bernice P. Bishop Museum was performed. These analyses demonstrated that this specimen belongs to a new species in the genus Hypnea, which is here described as H. tsudae sp. nov. C. yasutakei, in addition to being a new species, is also reported as the first confirmed record of the genus Calliblepharis in the Hawaiian archipelago, and the description of H. tsudae brings the number of species for this genus in Hawaiʻi to eight. 
    more » « less
  5. To address the taxonomic uncertainty of Sporolithon species named in the early to mid-20th century, targeted PCR sequencing was performed on eight historical type specimens and on recently collected specimens. Six type specimens amplified for the rbcL gene and were Sanger sequenced yielding sequences ranging in length from 118 to 280 base pairs (bp). One, S. australasicum, failed to amplify and another, S. howei, was amplified for the psbA gene yielding a sequence 544 bp in length. The 118 bp long rbcL sequence of the lectotype of S. crassiramosum showed that it is a later, heterotypic synonym of S. molle. The rbcL sequences of type specimens of S. episoredion, S. schmidtii, S. sibogae and S. timorense ranged from 118 to 228 bp, and each is a distinct species. The 544 bp long psbA sequence of S. howei is also unique. The 280 bp long rbcL sequence of the lectotype of S. durum did not match any sequence with that name in any public repository, including the previously published complete plastome and mitogenome sequences. However, it was identical in sequence to a specimen in GenBank from the southern coast of Western Australia as well as several other sequences generated from field-collected specimens from the states of South Australia and Western Australia. The rhodolith specimens from New Zealand previously called S. durum are S. nodosum sp. nov. The species is endemic to New Zealand. The epilithic specimens from New Zealand previously called S. durum are S. immotum sp. nov., which is also found along the southeastern coast of Australia. Sporolithon crypticum sp. nov. is described from the southern coast of Western Australia. RAxML and Bayesian phylogenetic analyses of Sporolithon psbA and rbcL sequences are congruent between the two plastid encoded genes. DNA sequencing of type specimens of species of corallines is demonstrated to be the only reliable method to correctly apply names. 
    more » « less