skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite-State Contract Theory with a Principal and a Field of Agents
We use the recently developed probabilistic analysis of mean field games with finitely many states in the weak formulation, to set-up a principal / agent contract theory model where the principal faces a large population of agents interacting in a mean field manner. We reduce the problem to the optimal control of dynamics of the McKean-Vlasov type, and we solve this problem explicitly in a special case reminiscent of the linear - quadratic mean field game models. The paper concludes with a numerical example demonstrating the power of the results when applied to a simple example of epidemic containment.  more » « less
Award ID(s):
1716673
PAR ID:
10169091
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We formulate a mean field game where each player stops a privately observed Brownian motion with absorption. Players are ranked according to their level of stopping and rewarded as a function of their relative rank. There is a unique mean field equilibrium, and it is shown to be the limit of associated n-player games. Conversely, the mean field strategy induces n-player ε-Nash equilibria for any continuous reward function—but not for discontinuous ones. In a second part, we study the problem of a principal who can choose how to distribute a reward budget over the ranks and aims to maximize the performance of the median player. The optimal reward design (contract) is found in closed form, complementing the merely partial results available in the n-player case. We then analyze the quality of the mean field design when used as a proxy for the optimizer in the n-player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain this with an asymptotic singularity in the induced n-player equilibrium distributions. Funding: M. Nutz is supported by an Alfred P. Sloan Fellowship and the Division of Mathematical Sciences of the National Science Foundation [Grants DMS-1812661 and DMS-2106056]. Y. Zhang is supported in part by the Natural Sciences and Engineering Research Council of Canada [NSERC Discovery Grant RGPIN-2020-06290]. 
    more » « less
  2. Liquid droplet dynamics are widely used in biological and engineering applications, which contain complex interfacial instabilities and pattern formation such as droplet merging, splitting and transport. This paper studies a class of mean field control formulations for these droplet dynamics, which can be used to control and manipulate droplets in applications. We first formulate the droplet dynamics as gradient flows of free energies in modified optimal transport metrics with nonlinear mobilities. We then design an optimal control problem for these gradient flows. As an example, a lubrication equation for a thin volatile liquid film laden with an active suspension is developed, with control achieved through its activity field. Lastly, we apply the primal–dual hybrid gradient algorithm with high-order finite-element methods to simulate the proposed mean field control problems. Numerical examples, including droplet formation, bead-up/spreading, transport, and merging/splitting on a two-dimensional spatial domain, demonstrate the effectiveness of the proposed mean field control mechanism. 
    more » « less
  3. The primary objective of this article is to present a general framework for users and applications of the master equation approach in extended mean field type control, for- mulated with a McKean-Vlasov stochastic differential equation that depends on the law of both the control and state variables. This control problem has recently gained significant attention and has been extensively studied at the level of the Bellman equa- tion. Here, we extend the analysis to the master equation and derive the corresponding Hamilton-Jacobi-Bellman equation. A key novelty of our approach is that we do not directly rely on the Fokker-Planck equation, which surprisingly leads to a significant simplification. We provide a concise theoretical presentation with proofs, as the stan- dard theory of stochastic control is not directly applicable. In the current work, the solution is constructed using an ansatz-based approach to dynamic programming via the master equation.We illustrate this method with a practical example. All proofs are presented in a self-contained manner. This paper offers a structured presentation of the extended mean field type control problem, serving as a valuable toolbox for users who are less focused on mathematical intricacies but seek a general framework for application. 
    more » « less
  4. In the present work, we develop a novel particle method for a general class of mean field control problems, with source and terminal constraints. Specific examples of the problems we consider include the dynamic formulation of thep-Wasserstein metric, optimal transport around an obstacle, and measure transport subject to acceleration controls. Unlike existing numerical approaches, our particle method is meshfree and does not require global knowledge of an underlying cost function or of the terminal constraint. A key feature of our approach is a novel way of enforcing the terminal constraint via a soft, nonlocal approximation, inspired by recent work on blob methods for diffusion equations.We prove convergence of our particle approximation to solutions of the continuum mean-field control problem in the sense of Γ-convergence. A byproduct of our result is an extension of existing discrete-to-continuum convergence results for mean field control problems to more general state and measure costs, as arise when modeling transport around obstacles, and more general constraint sets, including controllable linear time invariant systems. Finally, we conclude by implementing our method numerically and using it to compute solutions the example problems discussed above. We conduct a detailed numerical investigation of the convergence properties of our method, as well as its behavior in sampling applications and for approximation of optimal transport maps. 
    more » « less
  5. Abstract In this paper, we introduce a bilevel optimization framework for addressing inverse mean-field games, alongside an exploration of numerical methods tailored for this bilevel problem. The primary benefit of our bilevel formulation lies in maintaining the convexity of the objective function and the linearity of constraints in the forward problem. Our paper focuses on inverse mean-field games characterized by unknown obstacles and metrics. We show numerical stability for these two types of inverse problems. More importantly, we, for the first time, establish the identifiability of the inverse mean-field game with unknown obstacles via the solution of the resultant bilevel problem. The bilevel approach enables us to employ an alternating gradient-based optimization algorithm with a provable convergence guarantee. To validate the effectiveness of our methods in solving the inverse problems, we have designed comprehensive numerical experiments, providing empirical evidence of its efficacy. 
    more » « less