skip to main content


Title: Testing the Evolution of the Correlations between Supermassive Black Holes and their Host Galaxies using Eight Strongly Lensed Quasars
One of the main challenges in using high redshift active galactic nuclei to study the correlations between the mass of the supermassive Black Hole (MBH) and the properties of their active host galaxies is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed active galactic nuclei (AGN) with deep Hubble Space Telescope imaging, using the lens modelling code Lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. MBH are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGN, providing additional evidence that the correlation evolves over cosmic time. At the moment, the sample size of lensed AGN is small and thus they provide mostly a consistency check on systematic errors related to resolution for the non-lensed AGN. However, the number of known lensed AGN is expected to increase dramatically in the next few years, through dedicated searches in ground and space based wide field surveys, and they may become a key diagnostic of black hole and galaxy co-evolution.  more » « less
Award ID(s):
1907208
NSF-PAR ID:
10169669
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution. 
    more » « less
  2. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less
  3. Context. The host galaxy conditions for rapid supermassive black hole growth are poorly understood. Narrow-line Seyfert 1 (NLS1) galaxies often exhibit high accretion rates and are hypothesized to be prototypes of active galactic nuclei (AGN) at an early stage of their evolution. Aims. We present adaptive optics (AO) assisted VLT MUSE NFM observations of Mrk 1044, the nearest super-Eddington accreting NLS1. Together with archival MUSE WFM data, we aim to understand the host galaxy processes that drive Mrk 1044’s black hole accretion. Methods. We extracted the faint stellar continuum emission from the AGN-deblended host and performed spatially resolved emission line diagnostics with an unprecedented resolution. Combining both MUSE WFM and NFM-AO observations, we used a kinematic model of a thin rotating disk to trace the stellar and ionized gas motion from 10 kpc galaxy scales down to ∼30 pc around the nucleus. Results. Mrk 1044’s stellar kinematics follow circular rotation, whereas the ionized gas shows tenuous spiral features in the center. We resolve a compact star-forming circumnuclear ellipse (CNE) that has a semi-minor axis of 306 pc. Within this CNE, the gas is metal-rich and its line ratios are entirely consistent with excitation by star formation. With an integrated star formation rate of 0.19 ± 0.05  M ⊙  yr −1 , the CNE contributes 27% of the galaxy-wide star formation. Conclusions. We conclude that Mrk 1044’s nuclear activity has not yet affected the circumnuclear star formation. Thus, Mrk 1044 is consistent with the idea that NLS1s are young AGN. A simple mass budget consideration suggests that the circumnuclear star formation and AGN phase are connected and the patterns in the ionized gas velocity field are a signature of the ongoing AGN feeding. 
    more » « less
  4. null (Ed.)
    ABSTRACT We examine the 1.4 GHz radio luminosities of galaxies arising from star formation and active galactic nuclei (AGNs) within the state-of-the-art cosmological hydrodynamic simulation Simba. Simba grows black holes via gravitational torque limited accretion from cold gas and Bondi accretion from hot gas, and employs AGN feedback including jets at low Eddington ratios. We define a population of radio loud AGNs (RLAGNs) based on the presence of ongoing jet feedback. Within RLAGN, we define high and low excitation radio galaxies (HERGs and LERGs) based on their dominant mode of black hole accretion: torque limited accretion representing feeding from a cold disc, or Bondi representing advection-dominated accretion from a hot medium. Simba predicts good agreement with the observed radio luminosity function (RLF) and its evolution, overall as well as separately for HERGs and LERGs. Quiescent galaxies with AGN-dominated radio flux dominate the RLF at $\gtrsim 10^{22-23}$ W Hz−1, while star formation dominates at lower radio powers. Overall, RLAGNs have higher black hole accretion rates and lower star formation rates than non-RLAGN at a given stellar mass or velocity dispersion, but have similar black hole masses. Simba predicts an LERG number density of 8.53 Mpc−3, ∼10× higher than for HERGs, broadly as observed. While LERGs dominate among most massive galaxies with the largest black holes and HERGs dominate at high specific star formation rates, they otherwise largely populate similar-sized dark matter haloes and have similar host galaxy properties. Simba thus predicts that deeper radio surveys will reveal an increasing overlap between the host galaxy demographics of HERGs and LERGs. 
    more » « less
  5. ABSTRACT

    We investigated the gas obscuration and host galaxy properties of active galactic nuclei (AGNs) during the peak of cosmic accretion growth of supermassive black holes at redshift 0.8–1.8 using X-ray-detected AGNs with mid-infrared and far-infrared detection. The sample was classified as type-1 and type-2 AGNs using optical spectral and morphological classification while the host galaxy properties were estimated with multiwavelength spectral energy distribution fitting. For type-1 AGNs, the black hole mass was determined from MgII emission lines while the black hole mass of type-2 AGNs was inferred from the host galaxy’s stellar mass. Based on the derived parameters, the distribution of the sample in the absorption hydrogen column density (NH) versus Eddington ratio diagram is examined. Among the type-2 AGNs, 28 ± 5 per cent are in the forbidden zone, where the obscuration by dust torus cannot be maintained due to radiation pressure on dusty material. The fraction is higher than that observed in the local universe from the Burst Alert Telescope AGN Spectroscopic Survey data release 2 (BASS DR2) (11 ± 3 per cent). The higher fraction implies that the obscuration of the majority of AGNs is consistent with the radiation pressure regulated unified model but with an increased incidence of interstellar matter (ISM)-obscured AGNs. We discuss the possibility of dust-free absorption in type-1 AGNs and heavy ISM absorption in type-2 AGNs. We also find no statistical difference in the star-formation activity between type-1 and type-2 AGNs which may suggest that obscuration triggered by a gas-rich merging is not common among X-ray detected AGNs in this epoch.

     
    more » « less