ABSTRACT The sensitivity of X-ray facilities and our ability to detect fainter active galactic nuclei (AGNs) will increase with the upcoming Athena mission and the AXIS and Lynx concept missions, thus improving our understanding of supermassive black holes (BHs) in a luminosity regime that can be dominated by X-ray binaries. We analyse the population of faint AGNs ($$L_{\rm x, 2{-}10 \, keV}\leqslant 10^{42}\, \rm erg\,s^{ -1}$$) in the Illustris, TNG100, EAGLE, and SIMBA cosmological simulations, and find that the properties of their host galaxies vary from one simulation to another. In Illustris and EAGLE, faint AGNs are powered by low-mass BHs located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. We model the X-ray binary (XRB) populations of the simulated galaxies, and find that AGNs often dominate the galaxy AGN + XRB hard X-ray luminosity at z > 2, while XRBs dominate in some simulations at z < 2. Whether the AGN or XRB emission dominates in star-forming and quenched galaxies depends on the simulations. These differences in simulations can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. We compare the luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. Our comparison indicates that the simulations post-processed with our X-ray modelling tend to overestimate the AGN + XRB X-ray luminosity; luminosity that can be strongly affected by AGN obscuration. Some simulations reveal clear AGN trends as a function of stellar mass (e.g. galaxy luminosity drop in massive galaxies), which are not apparent in the observations. 
                        more » 
                        « less   
                    
                            
                            The radio galaxy population in the simba simulations
                        
                    
    
            ABSTRACT We examine the 1.4 GHz radio luminosities of galaxies arising from star formation and active galactic nuclei (AGNs) within the state-of-the-art cosmological hydrodynamic simulation Simba. Simba grows black holes via gravitational torque limited accretion from cold gas and Bondi accretion from hot gas, and employs AGN feedback including jets at low Eddington ratios. We define a population of radio loud AGNs (RLAGNs) based on the presence of ongoing jet feedback. Within RLAGN, we define high and low excitation radio galaxies (HERGs and LERGs) based on their dominant mode of black hole accretion: torque limited accretion representing feeding from a cold disc, or Bondi representing advection-dominated accretion from a hot medium. Simba predicts good agreement with the observed radio luminosity function (RLF) and its evolution, overall as well as separately for HERGs and LERGs. Quiescent galaxies with AGN-dominated radio flux dominate the RLF at $$\gtrsim 10^{22-23}$$ W Hz−1, while star formation dominates at lower radio powers. Overall, RLAGNs have higher black hole accretion rates and lower star formation rates than non-RLAGN at a given stellar mass or velocity dispersion, but have similar black hole masses. Simba predicts an LERG number density of 8.53 Mpc−3, ∼10× higher than for HERGs, broadly as observed. While LERGs dominate among most massive galaxies with the largest black holes and HERGs dominate at high specific star formation rates, they otherwise largely populate similar-sized dark matter haloes and have similar host galaxy properties. Simba thus predicts that deeper radio surveys will reveal an increasing overlap between the host galaxy demographics of HERGs and LERGs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009687
- PAR ID:
- 10237287
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 503
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3492 to 3509
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The coevolution of supermassive black holes and their host galaxies represents a fundamental question in astrophysics. One approach to investigating this question involves comparing the star formation rates (SFRs) of active galactic nuclei (AGNs) with those of typical star-forming galaxies. At relatively low redshifts (z≲ 1), radio AGNs manifest diminished SFRs, indicating suppressed star formation, but their behavior at higher redshifts is unclear. To examine this, we leveraged galaxy and radio-AGN data from the well-characterized W-CDF-S, ELAIS-S1, and XMM-LSS fields. We established two mass-complete reference star-forming galaxy samples and two radio-AGN samples, consisting of 1763 and 6766 radio AGNs, the former being higher in purity and the latter more complete. We subsequently computed star-forming fractions (fSF; the fraction of star-forming galaxies to all galaxies) for galaxies and radio-AGN host galaxies and conducted a robust comparison between them up toz≈ 3. We found that the tendency for radio AGNs to reside in massive galaxies primarily accounts for their lowfSF, which also shows a strong negative dependence uponM⋆and a strong positive evolution withz. To investigate further the star formation characteristics of those star-forming radio AGNs, we constructed the star-forming main sequence (MS) and investigated the behavior of the position of AGNs relative to the MS atz≈ 0–3. Our results reveal that radio AGNs display lower SFRs than star-forming galaxies in the low-zand high-M⋆regime and, conversely, exhibit comparable or higher SFRs than MS star-forming galaxies at higher redshifts or lowerM⋆.more » « less
- 
            ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.more » « less
- 
            Abstract We present high-resolution, three-dimensional hydrodynamic simulations of the fueling of supermassive black holes in elliptical galaxies from a turbulent medium on galactic scales, taking M87* as a typical case. The simulations use a new GPU-accelerated version of the Athena++ AMR code, and they span more than six orders of magnitude in radius, reaching scales similar to that of the black hole horizon. The key physical ingredients are radiative cooling and a phenomenological heating model. We find that the accretion flow takes the form of multiphase gas at radii less than about a kpc. The cold gas accretion includes two dynamically distinct stages: the typical disk stage in which the cold gas resides in a rotationally supported disk, and relatively rare chaotic stages (≲10% of the time) in which the cold gas inflows via chaotic streams. Though cold gas accretion dominates the time-averaged accretion rate at intermediate radii, accretion at the smallest radii is dominated by hot virialized gas at most times. The accretion rate scales with radius as M ̇ ∝ r 1 / 2 when hot gas dominates, and we obtain M ̇ ≃ 10 − 4 – 10 − 3 M ⊙ yr − 1 near the event horizon, similar to what is inferred from EHT observations. The orientation of the cold gas disk can differ significantly on different spatial scales. We propose a subgrid model for accretion in lower-resolution simulations in which the hot gas accretion rate is suppressed relative to the Bondi rate by ∼ ( r g / r Bondi ) 1 / 2 . Our results can also provide more realistic initial conditions for simulations of black hole accretion at the event horizon scale.more » « less
- 
            ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    