skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Existence of hypersurfaces with prescribed mean curvature I – generic min-max
We prove that, for a generic set of smooth prescription functions h on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature h. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including a generic set of smooth functions, and all nonzero analytic functions. In particular we do not need to assume that h has a sign.  more » « less
Award ID(s):
1811293
PAR ID:
10169770
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Cambridge journal of mathematics
Volume:
8
Issue:
2
ISSN:
2168-0930
Page Range / eLocation ID:
311 – 362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Allen–Cahn equation is a semilinear PDE which is deeply linked to the theory of minimal hypersurfaces via a singular limit. We prove curvature estimates and strong sheet separation estimates for stable solutions (building on recent work of Wang–Wei) of the Allen-Cahn equation on a 3-manifold. Using these, we are able to show that for generic metrics on a 3-manifold, minimal surfaces arising from Allen–Cahn solutions with bounded energy and bounded Morse index are two-sided and occur with multiplicity one and the expected Morse index. This confirms, in the Allen–Cahn setting, a strong form of the multiplicity one-conjecture and the index lower bound conjecture of Marques–Neves in 3-dimensions regarding min-max constructions of minimal surfaces. Allen–Cahn min-max constructions were recently carried out by Guaraco and Gaspar–Guaraco. Our resolution of the multiplicity-one and the index lower bound conjectures shows that these constructions can be applied to give a new proof of Yau's conjecture on infinitely many minimal surfaces in a 3-manifold with a generic metric (recently proven by Irie–Marques–Neves) with new geometric conclusions. Namely, we prove that a 3-manifold with a generic metric contains, for every p = 1, 2, 3,…, a two-sided embedded minimal surface with Morse index p and area ~ p13, as conjectured by Marques-Neves. 
    more » « less
  2. null (Ed.)
    Abstract For any smooth Riemannian metric on an $$(n+1)$$ ( n + 1 ) -dimensional compact manifold with boundary $$(M,\partial M)$$ ( M , ∂ M ) where $$3\le (n+1)\le 7$$ 3 ≤ ( n + 1 ) ≤ 7 , we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min–max theory in the Almgren–Pitts setting. We apply our Morse index estimates to prove that for almost every (in the $$C^\infty $$ C ∞ Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in M . If $$\partial M$$ ∂ M is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting. 
    more » « less
  3. null (Ed.)
    Abstract We study the phenomenon of Type-II curvature blow-up in mean curvature flows of rotationally symmetric noncompact embedded hypersurfaces. Using analytic techniques based on formal matched asymptotics and the construction of upper and lower barrier solutions enveloping formal solutions with prescribed behavior, we show that for each initial hypersurface considered, a mean curvature flow solution exhibits the following behavior near the “vanishing” time T : (1) The highest curvature concentrates at the tip of the hypersurface (an umbilic point), and for each choice of the parameter {\gamma>\frac{1}{2}} , there is a solution with the highest curvature blowing up at the rate {(T-t)^{{-(\gamma+\frac{1}{2})}}} . (2) In a neighborhood of the tip, the solution converges to a translating soliton which is a higher-dimensional analogue of the “Grim Reaper” solution for the curve-shortening flow. (3) Away from the tip, the flow surface approaches a collapsing cylinder at a characteristic rate dependent on the parameter γ. 
    more » « less
  4. We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth 3–dimensional Riemannian manifolds. The constructed min‐max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension 3. 
    more » « less
  5. Abstract We show that the mean curvature flow of generic closed surfaces in$$\mathbb{R}^{3}$$ R 3 avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in$$\mathbb{R}^{4}$$ R 4 is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact shrinking solitons. 
    more » « less