Organisations disclose their privacy practices by posting privacy policies on their websites. Even though internet users often care about their digital privacy, they usually do not read privacy policies, since understanding them requires a significant investment of time and effort. Natural language processing has been used to create experimental tools to interpret privacy policies, but there has been a lack of large privacy policy corpora to facilitate the creation of large-scale semi-supervised and unsupervised models to interpret and simplify privacy policies. Thus, we present the PrivaSeer Corpus of 1,005,380 English language website privacy policies collected from the web. The number of unique websites represented in PrivaSeer is about ten times larger than the next largest public collection of web privacy policies, and it surpasses the aggregate of unique websites represented in all other publicly available privacy policy corpora combined. We describe a corpus creation pipeline with stages that include a web crawler, language detection, document classification, duplicate and near-duplicate removal, and content extraction. We employ an unsupervised topic modelling approach to investigate the contents of policy documents in the corpus and discuss the distribution of topics in privacy policies at web scale. We further investigate the relationship between privacy policy domain PageRanks and text features of the privacy policies. Finally, we use the corpus to pretrain PrivBERT, a transformer-based privacy policy language model, and obtain state of the art results on the data practice classification and question answering tasks.
more »
« less
Question Answering for Privacy Policies: Combining Computational and Legal Perspectives
Privacy policies are long and complex documents that are difficult for users to read and understand, and yet, they have legal effects on how user data is collected, managed and used. Ideally, we would like to empower users to inform themselves about issues that matter to them, and enable them to selective explore those issues. We present PRIVACYQA, a corpus consisting of 1750 questions about the privacy policies of mobile applications, and over 3500 expert annotations of relevant answers. We observe that a strong neural baseline underperforms human performance by almost 0.3 F1 on PRIVACYQA, suggesting considerable room for improvement for future systems. Further, we use this dataset to shed light on challenges to question answerability, with domain-general implications for any question answering system. The PRIVACYQA corpus offers a challenging corpus for question answering, with genuine real-world utility.
more »
« less
- Award ID(s):
- 1914486
- PAR ID:
- 10169866
- Date Published:
- Journal Name:
- 2019 Conference on Empirical Methods in Natural Language Processing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding and managing data privacy in the digital world can be challenging for sighted users, let alone blind and lowvision (BLV) users. There is limited research on how BLV users, who have special accessibility needs, navigate data privacy, and how potential privacy tools could assist them. We conducted an in-depth qualitative study with 21 US BLV participants to understand their data privacy risk perception and mitigation, as well as their information behaviors related to data privacy. We also explored BLV users’ attitudes towards potential privacy question answering (Q&A) assistants that enable them to better navigate data privacy information. We found that BLV users face heightened security and privacy risks, but their risk mitigation is often insufficient. They do not necessarily seek data privacy information but clearly recognize the benefits of a potential privacy Q&A assistant. They also expect privacy Q&A assistants to possess cross-platform compatibility, support multi-modality, and demonstrate robust functionality. Our study sheds light on BLV users’ expectations when it comes to usability, accessibility, trust and equity issues regarding digital data privacy.more » « less
-
Privacy policies contain important information regarding the collection and use of user’s data. As Internet of Things (IoT) devices have become popular during the last years, these policies have become important to protect IoT users from unwanted use of private data collected through them. However, IoT policies tend to be long thus discouraging users to read them. In this paper, we seek to create an automated and annotated corpus for IoT privacy policies through the use of natural language processing techniques. Our method extracts the purpose from privacy policies and allows users to quickly find the important information relevant to their data collection/use.more » « less
-
Privacy policies are crucial for informing users about data practices, yet their length and complexity often deter users from reading them. In this paper, we propose an automated approach to identify and visualize data practices within privacy policies at different levels of detail. Leveraging crowd-sourced annotations from the ToS;DR platform, we experiment with various methods to match policy excerpts with predefined data practice descriptions. We further conduct a case study to evaluate our approach on a real-world policy, demonstrating its effectiveness in simplifying complex policies. Experiments show that our approach accurately matches data practice descriptions with policy excerpts, facilitating the presentation of simplified privacy information to users.more » « less
-
Developing methods of automated inference that are able to provide users with compelling human-readable justifications for why the answer to a question is correct is critical for domains such as science and medicine, where user trust and detecting costly errors are limiting factors to adoption. One of the central barriers to training question answering models on explainable inference tasks is the lack of gold explanations to serve as training data. In this paper we present a corpus of explanations for standardized science exams, a recent challenge task for question answering. We manually construct a corpus of detailed explanations for nearly all publicly available standardized elementary science question (approximately 1,680 3 rd through 5 th grade questions) and represent these as “explanation graphs” - sets of lexically overlapping sentences that describe how to arrive at the correct answer to a question through a combination of domain and world knowledge. We also provide an explanation-centered tablestore, a collection of semi-structured tables that contain the knowledge to construct these elementary science explanations. Together, these two knowledge resources map out a substantial portion of the knowledge required for answering and explaining elementary science exams, and provide both structured and free-text training data for the explainable inference task.more » « less
An official website of the United States government

