skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding How to Inform Blind and Low-Vision Users about Data Privacy through Privacy Question Answering Assistants
Understanding and managing data privacy in the digital world can be challenging for sighted users, let alone blind and lowvision (BLV) users. There is limited research on how BLV users, who have special accessibility needs, navigate data privacy, and how potential privacy tools could assist them. We conducted an in-depth qualitative study with 21 US BLV participants to understand their data privacy risk perception and mitigation, as well as their information behaviors related to data privacy. We also explored BLV users’ attitudes towards potential privacy question answering (Q&A) assistants that enable them to better navigate data privacy information. We found that BLV users face heightened security and privacy risks, but their risk mitigation is often insufficient. They do not necessarily seek data privacy information but clearly recognize the benefits of a potential privacy Q&A assistant. They also expect privacy Q&A assistants to possess cross-platform compatibility, support multi-modality, and demonstrate robust functionality. Our study sheds light on BLV users’ expectations when it comes to usability, accessibility, trust and equity issues regarding digital data privacy.  more » « less
Award ID(s):
1914486
PAR ID:
10598509
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
33rd USENIX Security Symposium (USENIX Security 24) - USENIX Association
Date Published:
ISBN:
978-1-939133-44-1
Subject(s) / Keyword(s):
Privacy Blind and Low-Vision Users Privacy Question Answering Assistants
Format(s):
Medium: X
Location:
Philadelphia, PA - USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligent voice assistants, and the thirdparty apps (aka “skills” or “actions”) that power them, are increasing in popularity and beginning to experiment with the ability to continuously listen to users. This paper studies how privacy concerns related to such always-listening voice assistants might affect consumer behavior and whether certain privacy mitigations would render them more acceptable. To explore these questions with more realistic user choices, we built an interactive app store that allowed users to install apps for a hypothetical always-listening voice assistant. In a study with 214 participants, we asked users to browse the app store and install apps for different voice assistants that offered varying levels of privacy protections. We found that users were generally more willing to install continuously-listening apps when there were greater privacy protections, but this effect was not universally present. The majority did not review any permissions in detail, but still expressed a preference for stronger privacy protections. Our results suggest that privacy factors into user choice, but many people choose to skip this information. 
    more » « less
  2. Website privacy policies are often lengthy and intricate. Privacy assistants assist in simplifying policies and making them more accessible and user-friendly. The emergence of generative AI (genAI) offers new opportunities to build privacy assistants that can answer users’ questions about privacy policies. However, genAI’s reliability is a concern due to its potential for producing inaccurate information. This study introduces GenAIPABench, a benchmark for evaluating Generative AI-based Privacy Assistants (GenAIPAs). GenAIPABench includes: 1) A set of curated questions about privacy policies along with annotated answers for various organizations and regulations; 2) Metrics to assess the accuracy, relevance, and consistency of responses; and 3) A tool for generating prompts to introduce privacy policies and paraphrased variants of the curated questions. We evaluated three leading genAI systems—ChatGPT-4, Bard, and Bing AI—using GenAIPABench to gauge their effectiveness as GenAIPAs. Our results demonstrate significant promise in genAI capabilities in the privacy domain while also highlighting challenges in managing complex queries, ensuring consistency, and verifying source accuracy. 
    more » « less
  3. Website privacy policies are often lengthy and intricate. Privacy assistants assist in simplifying policies and making them more accessible and user-friendly. The emergence of generative AI (genAI) offers new opportunities to build privacy assistants that can answer users’ questions about privacy policies. However, genAI’s reliability is a concern due to its potential for producing inaccurate information. This study introduces GenAIPABench, a benchmark for evaluating Generative AI-based Privacy Assistants (GenAIPAs). GenAIPABench includes: 1) A set of curated questions about privacy policies along with annotated answers for various organizations and regulations; 2) Metrics to assess the accuracy, relevance, and consistency of responses; and 3) A tool for generating prompts to introduce privacy policies and paraphrased variants of the curated questions. We evaluated 3 leading genAI systems—ChatGPT-4, Bard, and Bing AI—using GenAIPABench to gauge their effectiveness as GenAIPAs. Our results demonstrate significant promise in genAI capabilities in the privacy domain while also highlighting challenges in managing complex queries, ensuring consistency, and verifying source accuracy. 
    more » « less
  4. Users’ perceptions of fitness tracking privacy is a subject of active study, but how do various aspects of social identity inform these perceptions? We conducted an online survey (N=322) that explores the influence of identity on fitness tracking privacy perceptions and practices, considering participants’ gender, race, age, and whether or not they identify as LGTBQ*. Participants reported how comfortable they felt sharing fitness data, commented on whether they believed their identity impacted this comfort, and brainstormed several data sharing risks and a possible mitigation for each risk. For each surveyed dimension of social identity, we find one or more reliable effects on participants’ level of comfort sharing fitness data, specifically when considering institutional groups like employers, insurers, and advertisers. Further, 64% of participants indicate at least one of their identity characteristics informs their comfort. We also find evidence that the perceived risks of sharing fitness data vary by identity, but do not find evidence of difference in the strategies used to manage these risks. This work highlights a path towards reasoning about the privacy challenges of fitness tracking with respect for the lived experiences of all users. 
    more » « less
  5. Furnell, Steven (Ed.)
    A huge amount of personal and sensitive data is shared on Facebook, which makes it a prime target for attackers. Adversaries can exploit third-party applications connected to a user’s Facebook profile (i.e., Facebook apps) to gain access to this personal information. Users’ lack of knowledge and the varying privacy policies of these apps make them further vulnerable to information leakage. However, little has been done to identify mismatches between users’ perceptions and the privacy policies of Facebook apps. We address this challenge in our work. We conducted a lab study with 31 participants, where we received data on how they share information in Facebook, their Facebook-related security and privacy practices, and their perceptions on the privacy aspects of 65 frequently-used Facebook apps in terms of data collection, sharing, and deletion. We then compared participants’ perceptions with the privacy policy of each reported app. Participants also reported their expectations about the types of information that should not be collected or shared by any Facebook app. Our analysis reveals significant mismatches between users’ privacy perceptions and reality (i.e., privacy policies of Facebook apps), where we identified over-optimism not only in users’ perceptions of information collection, but also on their self-efficacy in protecting their information in Facebook despite experiencing negative incidents in the past. To the best of our knowledge, this is the first study on the gap between users’ privacy perceptions around Facebook apps and the reality. The findings from this study offer directions for future research to address that gap through designing usable, effective, and personalized privacy notices to help users to make informed decisions about using Facebook apps. 
    more » « less