skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Context-Aware Document Term Weighting for Ad-Hoc Search
Bag-of-words document representations play a fundamental role in modern search engines, but their power is limited by the shallow frequency-based term weighting scheme. This paper proposes HDCT, a context-aware document term weighting framework for document indexing and retrieval. It first estimates the semantic importance of a term in the context of each passage. These fine-grained term weights are then aggregated into a document-level bag-of-words representation, which can be stored into a standard inverted index for efficient retrieval. This paper also proposes two approaches that enable training HDCT without relevance labels. Experiments show that an index using HDCT weights significantly improved the retrieval accuracy compared to typical term-frequency and state-of-the-art embedding-based indexes.  more » « less
Award ID(s):
1815528
PAR ID:
10170033
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of The Web Conference 2020
Page Range / eLocation ID:
1897 to 1907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many content-based image search and instance retrieval systems implement bag-of-visual-words strategies for candidate selection. Visual processing of an image results in hundreds of visual words that make up a document, and these words are used to build an inverted index. Query processing then consists of an initial candidate selection phase that queries the inverted index, followed by more complex reranking of the candidates using various image features. The initial phase typically uses disjunctive top-k query processing algorithms originally proposed for searching text collections. Our objective in this paper is to optimize the performance of disjunctive top-k computation for candidate selection in content-based instance retrieval systems. While there has been extensive previous work on optimizing this phase for textual search engines, we are unaware of any published work that studies this problem for instance retrieval, where both index and query data are quite different from the distributions commonly found and exploited in the textual case. Using data from a commercial large-scale instance retrieval system, we address this challenge in three steps. First, we analyze the quantitative properties of index structures and queries in the system, and discuss how they differ from the case of text retrieval. Second, we describe an optimized term-at-a-time retrieval strategy that significantly outperforms baseline term-at-a-time and document-at-a-time strategies, achieving up to 66% speed-up over the most efficient baseline. Finally, we show that due to the different properties of the data, several common safe and unsafe early termination techniques from the literature fail to provide any significant performance benefits. 
    more » « less
  2. Lexical exact match systems that use inverted lists are a fundamental text retrieval architecture. A recent advance in neural IR, COIL, extends this approach with contextualized inverted lists from a deep language model backbone and performs retrieval by comparing contextualized query-document term representation, which is effective but computationally expensive. This paper explores the effectiveness-efficiency tradeoff in COIL-style systems, aiming to reduce the computational complexity of retrieval while preserving term semantics. It proposes COILcr, which explicitly factorizes COIL into intra-context term importance weights and cross-context semantic representations. At indexing time, COILcr further maps term semantic representations to a smaller set of canonical representations. Experiments demonstrate that canonical representations can efficiently preserve term semantics, reducing the storage and computational cost of COIL-based retrieval while maintaining model performance. The paper also discusses and compares multiple heuristics for canonical representation selection and looks into its performance in different retrieval settings. 
    more » « less
  3. Lexical exact-match systems perform text retrieval efficiently with sparse matching signals and fast retrieval through inverted lists, but naturally suffer from the mismatch between lexical surface form and implicit term semantics. This paper proposes to directly bridge the surface form space and the term semantics space in lexical exact-match retrieval via contextualized surface forms (CSF). Each CSF pairs a lexical surface form with a context source, and is represented by a lexical form weight and a contextualized semantic vector representation. This framework is able to perform sparse lexicon-based retrieval by learning to represent each query and document as a "bag-of-CSFs", simultaneously addressing two key factors in sparse retrieval: vocabulary expansion of surface form and semantic representation of term meaning. At retrieval time, it efficiently matches CSFs through exact-match of learned surface forms, and effectively scores each CSF pair via contextual semantic representations, leading to joint improvement in both term match and term scoring. Multiple experiments show that this approach successfully resolves the main mismatch issues in lexical exact-match retrieval and outperforms state-of-the-art lexical exact-match systems, reaching comparable accuracy as lexical all-to-all soft match systems as an efficient exact-match-based system. 
    more » « less
  4. Language model pre-training has spurred a great deal of attention for tasks involving natural language understanding, and has been successfully applied to many downstream tasks with impressive results. Within information retrieval, many of these solutions are too costly to stand on their own, requiring multi-stage ranking architectures. Recent work has begun to consider how to “backport” salient aspects of these computationally expensive models to previous stages of the retrieval pipeline. One such instance is DeepCT, which uses BERT to re-weight term importance in a given context at the passage level. This process, which is computed offline, results in an augmented inverted index with re-weighted term frequency values. In this work,we conduct an investigation of query processing efficiency over DeepCT indexes. Using a number of candidate generation algorithms, we reveal how term re-weighting can impact query processing latency, and explore how DeepCT can be used as a static index pruning technique to accelerate query processing without harming search effectiveness. 
    more » « less
  5. Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR.Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embed-dings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited. 
    more » « less