skip to main content


Title: NCSA Internship Program for Cyberinfrastructure Professionals
In 2017, National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (UIUC) established a pilot internship program for cyberinfrastructure (CI) professionals. The program, funded by NSF’s Office of Advanced Cyberinfrastructure (OAC) (award 1730519), was designed to address the shortage of a workforce with the specialized skills needed to support advanced CI operations. The program was envisioned to provide internship opportunities for individuals who want to gain first-hand experience in the CI operations at a supercomputing center, and develop and refine instructional materials to serve as a template that is openly distributed for use by other centers and institutions to train CI professionals. Program interns are selected from a pool of applicants with the main selection criteria of having a completed classwork equivalent to an associate degree and a demonstrated interest in a career in CI operations. Interns work directly with a group of NCSA engineers in one of the areas of CI focus to gain hands-on experience in the deployment and operation of high-performance computing (HPC) infrastructure at a leading HPC center. The expectation is that interns will enter a workforce that will develop, deploy, manage and support advanced CI at other universities, centers, and industry to meet the needs of the national computational science research community across academia and industry.  more » « less
Award ID(s):
1730519
NSF-PAR ID:
10170072
Author(s) / Creator(s):
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing (PEARC ’20)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supercomputers are used to power discoveries and to reduce the time-to-results in a wide variety of disciplines such as engineering, physical sciences, and healthcare. They are globally considered as vital for staying competitive in defense, the financial sector, several mainstream businesses, and even agriculture. An integral requirement for enabling the usage of the supercomputers, like any other computer, is the availability of the software. Scalable and efficient software is typically required for optimally using the large-scale supercomputing platforms, and thereby, effectively leveraging the investments in the advanced CyberInfrastructure (CI). However, developing and maintaining such software is challenging due to several factors, such as, (1) no well-defined processes or guidelines for writing software that can ensure high-performance on supercomputers, and (2) shortfall of trained workforce having skills in both software engineering and supercomputing. With the rapid advancement in the computer architecture discipline, the complexity of the processors that are used in the supercomputers is also increasing, and, in turn, the task of developing efficient software for supercomputers is further becoming challenging and complex. To mitigate the aforementioned challenges, there is a need for a common platform that brings together different stakeholders from the areas of supercomputing and software engineering. To provide such a platform, the second workshop on Software Challenges to Exascale Computing (SCEC) was organized in Delhi, India, during December 13–14, 2018. The SCEC 2018 workshop informed participants about the challenges in large-scale HPC software development and steered them in the direction of building international collaborations for finding solutions to those challenges. The workshop provided a forum through which hardware vendors and software developers can communicate with each other and influence the architecture of the next-generation supercomputing systems and the supporting software stack. By fostering cross-disciplinary associations, the workshop served as a stepping-stone towards innovations in the future. We are very grateful to the Organizing and Program Committees (listed below), the sponsors (US National Science Foundation, Indian National Supercomputing Mission, Atos, Mellanox, Centre for Development of Advanced Computing, San Diego Supercomputing Center, Texas Advanced Computing Center), and the participants for their contributions to making the SCEC 2018 workshop a success. 
    more » « less
  2. Our work describes the best-practices and findings for a recent NSF IUSE HSI HRD grant. Its overarching goal is to drive an institutional change where the University proactively places students in internships with local industry partners. Students at the University are non-traditional, minority and low-income. They often working twenty to forty hours a week in non-curricular jobs. The Grant Program fully or partially subsidizes compensation for interns through financial aid scholarships. It aims to replace non-curricular work with relevant, real-world engineering experiences. This in turn improves their prospects to find jobs post-graduation. Modern students work while going to school. A small amount of work—less than fifteen hours a week—is beneficial. However, beyond twenty hours a week has a negative impact. Hispanic/Latino(a) students work twenty to forty hours a week, more than any other demographic. This workload affects attendance, GPA, and utility, resulting in poor workforce placement. Academia must concede that work comes first for under-represented students. Universities must take steps to supplant irrelevant work experience with industry internships. Participants of this program received relevant internship/work experience, had better retention rates due to perceived utility of their degree. In the long term we expect timely to graduation due to participants taking internship units as credit toward their degree. Students learned of the internships from faculty members soliciting applications to the program, supported by the grant. Executing the MOU between the University and industry partners took considerable effort and is a major barrier to executing formal partnerships between internship hosts. One MOU is still in negotiation since the start of the program. Despite some student participants reporting prior internship experiences, no one involved in the program would have found an internship this academic year without help from the Grant Program. Some students claimed to have submitted from twenty to fifty applications and the Grant Program was the only internship that called for an interview. Quality of internship varied from corporation to corporation. Universities must carefully monitor the feedback of participants to ensure that the individual goals of the participants are being met. Finding corporations that are willing to invest time in mentorship of students is a critical component to ensure student satisfaction. Even so, regardless of internship quality, participants would not have found internships if not for the Grant Program. According to the participants, internships are an opportunity to network and build lasting professional connections. While students may be unable to turn every internship into a full-time position, each experience will give them something much more valuable and long-lasting: relationships with professionals and co-workers. The connections they make during their time at an organization can be stepping stones to their next opportunity. 
    more » « less
  3. National Science Foundation (NSF) funded Engineering Research Centers (ERC) must complement their technical research with various education and outreach opportunities to: 1) improve and promote engineering education, both within the center and to the local community; 2) encourage and include the underrepresented populations to participate in Engineering activities; and 3) advocate communication and collaboration between industry and academia. ERCs ought to perform an adequate evaluation of their educational and outreach programs to ensure that beneficial goals are met. Each ERC has complete autonomy in conducting and reporting such evaluation. Evaluation tools used by individual ERCs are quite similar, but each ERC has designed their evaluation processes in isolation, including evaluation tools such as survey instruments, interview protocols, focus group protocols, and/or observation protocols. These isolated efforts resulted in redundant resources spent and lacking outcome comparability across ERCs. Leaders from three different ERCs led and initiated a collaborative effort to address the above issue by building a suite of common evaluation instruments that all current and future ERCs can use. This leading group consists of education directors and external evaluators from all three partners ERCs and engineering education researchers, who have worked together for two years. The project intends to address the four ERC program clusters: Broadening Participation in Engineering, Centers and Networks, Engineering Education, and Engineering Workforce Development. The instruments developed will pay attention to culture of inclusion, outreach activities, mentoring experience, and sustained interest in engineering. The project will deliver best practices in education program evaluation, which will not only support existing ERCs, but will also serve as immediate tools for brand new ERCs and similar large-scale research centers. Expanding the research beyond TEEC and sharing the developed instruments with NSF as well as other ERCs will also promote and encourage continual cross-ERC collaboration and research. Further, the joint evaluation will increase the evaluation consistency across all ERC education programs. Embedded instrumental feedback loops will lead to continual improvement to ERC education performance and support the growth of an inclusive and innovative engineering workforce. Four major deliveries are planned. First, develop a common quantitative assessment instrument, named Multi-ERC Instrument Inventory (MERCII). Second, develop a set of qualitative instruments to complement MERCII. Third, create a web-based evaluation platform for MERCII. Fourth, update the NSF ERC education program evaluation best practice manual. These deliveries together will become part of and supplemented by an ERC evaluator toolbox. This project strives to significantly impact how ERCs evaluate their educational and outreach programs. Single ERC based studies lack the sample size to truly test the validity of any evaluation instruments or measures. A common suite of instruments across ERCs would provide an opportunity for a large scale assessment study. The online platform will further provide an easy-to-use tool for all ERCs to facilitate evaluation, share data, and reporting impacts. 
    more » « less
  4. ABSTRACT The Connecticut (CT) State Colleges and Universities’ College of Technology (COT) and its Regional Center for Next Generation Manufacturing (RCNGM), a National Science Foundation (NSF) Center of Excellence, educate manufacturing technicians with necessary skills as needed by the manufacturing industry. The COT-RCNGM continuously broadens its partnerships with other community colleges, high schools and industry in New England and at the national and international levels to provide support and expertise to both students and educators in advanced manufacturing programs. The COT was founded in 1995 through state legislation to create and implement seamless pathways in engineering and technology. This system-wide collaboration of all twelve CT public community colleges, including seven state-of-the-art Advanced Manufacturing Technology Centers (AMTC) at CT’s community colleges; eight public and private universities; technical high and comprehensive high schools; and representatives from industry, including the CT Business & Industry Association (CBIA) which represents 10,000 companies. The pathways have multiple points of entry and exit for job placement and stackable credentials for degree completion, including national certifications that have increased enrollments and created program stability. The COT is led by the Site Coordinators Council that meets monthly and consists of faculty and deans from all COT educational partners and representatives from industry and government. The Council identifies and reviews new programs, concentrations, and certificates based on industry needs and creates seamless articulated pathways. Final approval is often completed within three months for immediate implementation, allowing a timely response to workforce needs. The COT-RCNGM partners with CBIA to conduct a biannual survey of manufacturing workforce needs in CT. Educators use the survey to identify curricular needs and support funding proposals for educational programs. Asnuntuck Community College, the original AMTC, was able to use industry data from the survey to help create new programs. The RCNGM partners with other NSF grants and entities such as the National Network for Manufacturing Innovation (NNMI). The COT-RCNGM produced DVDs profiling students who have completed COT programs and work in CT manufacturing companies. The Manufacture Your Future 2.0 and the You Belong: Women in Manufacturing DVDs are distributed nationally to increase knowledge of career opportunities in manufacturing. Finally, the COT-RCNGM organizes the Greater Hartford Mini Maker Faire that brings together community members of all ages and backgrounds to share projects that promote interest in STEM fields. Participation in the Maker Movement led to involvement in a national network of Maker Faire organizers including a meeting at the White House where one organizer from each state was invited to attend and discuss the national impact of Makers. 
    more » « less
  5. The National Science Foundation Advanced Technological Education (NSF-ATE) program has grant funding opportunities available to support CTE and STEM technician program development. NSF-ATE grant funding opportunities are intended to help educators develop or improve their 2-year technician programs. Proposals may focus on program, curriculum, and educational materials development, program improvement, faculty professional development, teacher preparation, career pathways, outreach activities, undergraduate research experiences, internships, apprenticeships, and more. Partnerships with universities, colleges, and 7-12 institutions in support of workforce development are encouraged. Industry partnerships are essential for NSF-ATE projects. NSF-ATE supports Emerging Technologies and technologies such as Biotechnology, Engineering, Energy, Environmental, Agricultural, Advanced Manufacturing, Micro/Nano Technologies, Information, Security, and Geospatial. Multiple categories of NSF-ATE grant funding are available including Projects, Small Projects for Institutions New to ATE, Applied Research on Technician Education, National Centers, and Resource Centers. The new NSF-ATE solicitation (NSF 21-598) was released in 2021 and includes higher funding levels and multiple categories of grant funding opportunities, including a new Consortia for Innovations in Technician Education. NSF-ATE has some helpful resources for educators planning to develop or improve their courses or programs. Mentoring opportunities for grant proposal development are available through multiple projects such as Mentor-Connect, MNT-EC (Micro Nano Technology Education Center), Mentor Up, Project Vision, Pathways to Innovation, CCPISTEM, and FORCCE-ATE. Each of these projects has a unique approach and a different focus to help their mentees successfully submit NSF-ATE grant proposals. 
    more » « less