- Award ID(s):
- 1751404
- NSF-PAR ID:
- 10170079
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 494
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 5091 to 5109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The density and temperature properties of the intergalactic medium (IGM) reflect the heating and ionization history during cosmological structure formation, and are primarily probed by the Ly α forest of neutral hydrogen absorption features in the observed spectra of background sources. We present the methodology and initial results from the Cholla IGM Photoheating Simulation (CHIPS) suite performed with the graphics process unit–accelerated Cholla code to study the IGM at high, uniform spatial resolution maintained over large volumes. In this first paper, we examine the IGM structure in CHIPS cosmological simulations that include IGM uniform photoheating and photoionization models where hydrogen reionization is completed early or by redshift z ∼ 6. Comparing with observations of the large- and small-scale Ly α transmitted flux power spectra P ( k ) at redshifts 2 ≲ z ≲ 5.5, the relative agreement of the models depends on scale, with the self-consistent Puchwein et al. IGM photoheating and photoionization model in good agreement with the flux P ( k ) at k ≳ 0.01 s km −1 at redshifts 2 ≲ z ≲ 3.5. On larger scales, the P ( k ) measurements increase in amplitude from z ∼ 4.6 to z ∼ 2.2, faster than the models, and lie in between the model predictions at 2.2 ≲ z ≲ 4.6 for k ≈ 0.002–0.01 s km −1 . We argue that the models could improve by changing the He ii photoheating rate associated with active galactic nuclei to reduce the IGM temperature at z ∼ 3. At higher redshifts, z ≳ 4.5, the observed flux P ( k ) amplitude increases at a rate intermediate between the models, and we argue that for models where hydrogen reionization is completed late ( z ∼ 5.5–6), resolving this disagreement will require inhomogeneous or “patchy” reionization. We then use an additional set of simulations to demonstrate that our results have numerically converged and are not strongly affected by varying cosmological parameters.more » « less
-
ABSTRACT The presence of excess scatter in the Ly-α forest at z ∼ 5.5, together with the existence of sporadic extended opaque Gunn-Peterson troughs, has started to provide robust evidence for a late end of hydrogen reionization. However, low data quality and systematic uncertainties complicate the use of Ly-α transmission as a precision probe of reionization’s end stages. In this paper, we assemble a sample of 67 quasar sightlines at z > 5.5 with high signal-to-noise ratios of >10 per ≤15 km s−1 spectral pixel, relying largely on the new XQR-30 quasar sample. XQR-30 is a large program on VLT/X-Shooter which obtained deep (SNR > 20 per pixel) spectra of 30 quasars at z > 5.7. We carefully account for systematics in continuum reconstruction, instrumentation, and contamination by damped Ly-α systems. We present improved measurements of the mean Ly-α transmission over 4.9 < z < 6.1. Using all known systematics in a forward modelling analysis, we find excellent agreement between the observed Ly-α transmission distributions and the homogeneous-UVB simulations Sherwood and Nyx up to z ≤ 5.2 (<1σ), and mild tension (∼2.5σ) at z = 5.3. Homogeneous UVB models are ruled out by excess Ly-α transmission scatter at z ≥ 5.4 with high confidence (>3.5σ). Our results indicate that reionization-related fluctuations, whether in the UVB, residual neutral hydrogen fraction, and/or IGM temperature, persist in the intergalactic medium until at least z = 5.3 (t = 1.1 Gyr after the big bang). This is further evidence for a late end to reionization.more » « less
-
ABSTRACT Revealing the cosmic hydrogen reionization history is one of the main goals of the modern cosmology. z > 5 quasars (QSOs) have been used as back-lights to investigate the evolution of the intervening intergalactic medium (IGM) during the cosmic reionization since their first discovery. However, due to the small population of luminous QSOs (∼130 QSOs known to date), a tight constraint on the reionization history has not yet been placed. In this work, we aim to tighten the constraint using the 93 QSOs (5.5 < z < 7.1) recently discovered in the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQS) project. This is the largest QSO sample used to constrain the epoch of reionization. We measure the mean IGM Ly α transmission and the QSO near-zone size using the UV spectra of these QSOs. The mean IGM Ly α transmission rises above zero at z ≲ 6, indicating the end of the reionization. The near-zone sizes of the SHELLQs QSOs are consistent with sizes spanned by QSOs of lifetime tq ∼ 1–100 Myr in simulations. Due to the scatter created by the low signal-to-noise spectra and large Ly α redshift uncertainty, we cannot conclude whether the redshift evolution of the near-zone size is affected by the reionization effect.
-
ABSTRACT Quasar absorption spectra measurements suggest that reionization proceeded rapidly, ended late at z ∼ 5.5, and was followed by a flat ionizing background evolution. Simulations that reproduce this behaviour often rely on a fine-tuned galaxy ionizing emissivity, which peaks at z ∼ 6–7 and drops a factor of 1.5–2.5 by z ∼ 5. This is puzzling since the abundance of galaxies is observed to grow monotonically during this period. Explanations for this include effects such as dust obscuration of ionizing photon escape and feedback from photoheating of the IGM. We explore the possibility that this drop in emissivity is instead an artefact of one or more modelling deficiencies in reionization simulations. These include possibly incorrect assumptions about the ionizing spectrum and/or inaccurate modelling of IGM clumping. Our results suggest that the need for a drop could be alleviated if simulations are underestimating the IGM opacity from massive, star-forming haloes. Other potential modelling issues either have a small effect or require a steeper drop when remedied. We construct an illustrative model in which the emissivity is nearly flat at reionization’s end, evolving only ∼0.05 dex at 5 < z < 7. More realistic scenarios, however, require a ∼0.1–0.3 dex drop. We also study the evolution of the Ly α effective optical depth distribution and compare to recent measurements. We find that models that feature a hard ionizing spectrum and/or are driven by faint, low-bias sources most easily reproduce the mean transmission and optical depth distribution of the forest simultaneously.
-
Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3.more » « less