skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the Temperature-density Relation of the Inter-galactic Medium from Analytically Modeling Lyα Forest Absorbers
Abstract The absorption by neutral hydrogen in the intergalactic medium (IGM) produces the Ly α forest in the spectra of quasars. The Ly α forest absorbers have a broad distribution of neutral hydrogen column density N H I and Doppler b parameter. The narrowest Ly α absorption lines (of lowest b ) with neutral hydrogen column density above ∼10 13 cm −2 are dominated by thermal broadening, which can be used to constrain the thermal state of the IGM. Here we constrain the temperature-density relation T = T 0 ( ρ / ρ ¯ ) γ − 1 of the IGM at 1.6 < z < 3.6 by using N H I and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N H I -dependent low- b cutoff in the b distribution. In each N H I bin, the b cutoff is estimated using two methods, one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution. We find that the IGM temperature T 0 at the mean gas density ρ ¯ shows a peak of ∼1.5 × 10 4 K at z ∼ 2.7–2.9. At redshift higher than this, the index γ approximately remains constant, and it starts to increase toward lower redshifts. The evolution in both parameters is in good agreement with constraints from completely different approaches, which signals that He ii reionization completes around z ∼ 3.  more » « less
Award ID(s):
2007499
PAR ID:
10420272
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Research in Astronomy and Astrophysics
Volume:
23
Issue:
4
ISSN:
1674-4527
Page Range / eLocation ID:
045007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the metal species associated with the Ly α forest in eBOSS quasar spectra. Metal absorption lines are revealed in stacked spectra from cross-correlating the selected Ly α absorbers in the forest and the flux fluctuation field. Up to 13 metal species are identified as being associated with relatively strong Ly α absorbers (those with flux fluctuations − 1.0 < δ Ly α < − 0.6 and with a neutral hydrogen column density of ∼ 10 15−16 cm −2 ) over the absorber redshift range of 2 < z abs < 4. The column densities of these species decrease toward higher redshift and for weaker Ly α absorbers. From modeling the column densities of various species, we find that the column density pattern suggests contributions from multiple gas components, both in the circumgalactic medium (CGM) and the intergalactic medium (IGM). While the low-ionization species (e.g., C ii , Si ii , and Mg ii ) can be explained by high-density, cool gas ( T ∼ 10 4 K) from the CGM, the high-ionization species may reside in low-density or high-temperature gas in the IGM. The measurements provide inputs for modeling the metal contamination in the Ly α forest baryon acoustic oscillation measurements. Comparisons with metal absorptions in high-resolution quasar spectra and hydrodynamic galaxy formation simulations can further elucidate the physical conditions of these Ly α absorbers. 
    more » « less
  2. Abstract The Ly-α forest is the large-scale structure probe for which we appear to have modeling control to the highest wavenumbers. This makes the Ly-α forest of great interest for constraining the warmness/fuzziness of dark matter and the timing of reionization processes. However, the standard statistic, the Ly-α forest power spectrum, is unable to strongly constrain the IGM temperature-density relation, and this inability further limits how well other high wavenumber-sensitive parameters can be constrained. With the aim of breaking these degeneracies, we measure the power spectrum of the Ly-β forest and its cross correlation with the coeval Ly-α forest using the one hundred spectra of z = 3.5 − 4.5 quasars in the VLT/X-Shooter XQ-100 Legacy Survey, motivated by the Ly-β transition’s smaller absorption cross section that makes it sensitive to somewhat higher densities relative to the Ly-α transition. Our inferences from this measurement for the IGM temperature-density relation appear to latch consistently onto the recent tight lower-redshift Ly-α forest constraints. The z = 3.4 − 4.7 trends we find using the Ly-α–Ly-β cross correlation show a flattening of the slope of the temperature-density relation with decreasing redshift. This is the trend anticipated from ongoing He ii reionization and there being sufficient time to reach the asymptotic temperature-density slope after hydrogen reionization completes. Furthermore, our measurements provide a consistency check on IGM models that explain the Ly-α forest, with the cross correlation being immune to systematics that are uncorrelated between the two forests, such as metal line contamination. 
    more » « less
  3. Abstract We explore the role of galactic feedback on the low-redshift Lyα(Lyα) forest (z≲ 2) statistics and its potential to alter the thermal state of the intergalactic medium. Using the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) suite, we explore variations of the AGN and stellar feedback models in the IllustrisTNG and Simba subgrid models. We find that both AGN and stellar feedback in Simba play a role in setting the Lyαforest column density distribution function (CDD) and the Doppler width (b-value) distribution. The Simba AGN jet feedback mode is able to efficiently transport energy out to the diffuse IGM, causing changes in the shape and normalization of the CDD and a broadening of theb-value distribution. We find that stellar feedback plays a prominent role in regulating supermassive black hole growth and feedback, highlighting the importance of constraining stellar and AGN feedback simultaneously. In IllustrisTNG, the AGN feedback variations explored in CAMELS do not affect the Lyαforest, but varying the stellar feedback model does produce subtle changes. Our results imply that the low-zLyαforest can be sensitive to changes in the ultraviolet background, stellar and black hole feedback, and that AGN jet feedback in particular can have a strong effect on the thermal state of the IGM. 
    more » « less
  4. Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6. 
    more » « less
  5. Abstract The density and temperature properties of the intergalactic medium (IGM) reflect the heating and ionization history during cosmological structure formation, and are primarily probed by the Ly α forest of neutral hydrogen absorption features in the observed spectra of background sources. We present the methodology and initial results from the Cholla IGM Photoheating Simulation (CHIPS) suite performed with the graphics process unit–accelerated Cholla code to study the IGM at high, uniform spatial resolution maintained over large volumes. In this first paper, we examine the IGM structure in CHIPS cosmological simulations that include IGM uniform photoheating and photoionization models where hydrogen reionization is completed early or by redshift z ∼ 6. Comparing with observations of the large- and small-scale Ly α transmitted flux power spectra P ( k ) at redshifts 2 ≲ z ≲ 5.5, the relative agreement of the models depends on scale, with the self-consistent Puchwein et al. IGM photoheating and photoionization model in good agreement with the flux P ( k ) at k ≳ 0.01 s km −1 at redshifts 2 ≲ z ≲ 3.5. On larger scales, the P ( k ) measurements increase in amplitude from z ∼ 4.6 to z ∼ 2.2, faster than the models, and lie in between the model predictions at 2.2 ≲ z ≲ 4.6 for k ≈ 0.002–0.01 s km −1 . We argue that the models could improve by changing the He ii photoheating rate associated with active galactic nuclei to reduce the IGM temperature at z ∼ 3. At higher redshifts, z ≳ 4.5, the observed flux P ( k ) amplitude increases at a rate intermediate between the models, and we argue that for models where hydrogen reionization is completed late ( z ∼ 5.5–6), resolving this disagreement will require inhomogeneous or “patchy” reionization. We then use an additional set of simulations to demonstrate that our results have numerically converged and are not strongly affected by varying cosmological parameters. 
    more » « less