Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.
Irrigated agriculture in snow-dependent regions contributes significantly to global food production. This study quantifies the impacts of climate change on irrigated agriculture in the snow-dependent Yakima River Basin (YRB) in the Pacific Northwest United States. Here we show that increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity. The overall reduction in mean annual productivity also dampens interannual yield variability, limiting yield-driven revenue fluctuations. Our findings show that farmers who adapt to climate change by planting improved crop varieties may potentially increase their expected mean annaul productivity in an altered climate, but remain strongly vulnerable to irrigation water shortages that substantially increase interannual yield variability (i.e., increasing revenue volatility). Our results underscore the importance for crop adaptation strategies to simultaneously capture the biophysical effects of warming as well as the institutional controls on water availability.
more » « less- Award ID(s):
- 1639458
- PAR ID:
- 10170214
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change is expected to increase the scarcity and variability of fresh water supplies in some regions with important implications for irrigated agriculture. By allowing for increased flexibility in response to scarcity and by incentivizing the allocation of water to higher value use, markets can play an important role in limiting the economic losses associated with droughts. Using data on water demand, the seniority of water rights, county agricultural reports, high-resolution data on cropping patterns, and agronomic estimates of crop water requirements, we estimate the benefits of market-based allocations of surface water for California’s Central Valley. Specifically, we estimate the value of irrigation water and compare the agricultural costs of water shortages under the existing legal framework and under an alternate system that allows for trading of water. We find that a more efficient allocation of curtailments could reduce the costs of water shortages by as much as $362 million dollars per year or 4.4% of the net agricultural revenue in California in expectation, implying that institutional and market reform may offer important opportunities for adaptation.
-
Efficient irrigation technologies, which seem to promise reduced production costs and water consumption in heavily irrigated areas, may instead be driving increased irrigation use in areas that were not traditionally irrigated. As a result, the total dependence on supplemental irrigation for crop production and revenue is steadily increasing across the contiguous United States. Quantifying this dependence has been hampered by a lack of comprehensive irrigated and dryland yield and harvested area data outside of major irrigated regions, despite the importance and long history of irrigation applications in agriculture. This study used a linear regression model to disaggregate lumped agricultural statistics and estimate average irrigated and dryland yields at the state level for five major row crops: corn, cotton, hay, soybeans, and wheat. For 1945–2015, we quantified crop production, irrigation enhancement revenue, and irrigated and dryland areas in both intensively irrigated and marginally-dependent states, where both irrigated and dryland farming practices are implemented. In 2015, we found that irrigating just the five commodity crops enhanced revenue by ~$7 billion across all states with irrigation. In states with both irrigated and dryland practices, 23% of total produced area relied on irrigation, resulting in 7% more production than from dryland practices. There was a clear response to increasing biofuel demand, with the addition of more than 3.6 million ha of irrigated corn and soybeans in the last decade in marginally-dependent states. Since 1945, we estimate that yield enhancement due to irrigation has resulted in over $465 billion in increased revenue across the contiguous United States (CONUS). Example applications of this dataset include estimating historical water use, evaluating the effects of environmental policies, developing new resource management strategies, economic risk analyses, and developing tools for farmer decision making.more » « less
-
Abstract Groundwater extraction in the United States (US) is unsustainable, making it essential to understand the impacts of limited water use on irrigated agriculture. To improve this understanding, we integrated a gridded crop model with satellite observations, recharge estimates, and water survey data to assess the effects of sustainable groundwater withdrawals on US irrigated agricultural production. The gridded crop model agrees with satellite‐based estimates of evapotranspiration (
R 2 = 0.68), as well as survey data from the United States Department of Agriculture (R 2 = 0.82–0.94 for county‐level production and 0.37–0.54 for county‐level yield). Using the optimistic assumption that groundwater extraction equals effective aquifer recharge rate, we find that sustainable groundwater use decreases US irrigated production of maize, soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using a more conservative assumption of groundwater availability, US irrigated production of maize, soybean, and winter wheat decreases by 45%, 37%, and 36%, respectively. The wide range of simulated losses is driven by considerable uncertainty in surface water and groundwater interactions, as well as accounting for the many aspects of sustainability. Our results demonstrate the vulnerability of US irrigated agriculture to unsustainable groundwater pumping, highlighting the difficulty of expanding or even maintaining irrigated food production in the face of climate change, population growth, and shifting dietary demands. These findings are based on reducing pumping by fallowing irrigated farmland; however, alternate pumping reduction strategies or technological advances in crop genetics and irrigation could produce different results. -
null (Ed.)Fluctuations in temperature and precipitation are expected to increase with global climate change, with more frequent, more intense and longer-lasting extreme events, posing greater challenges for the security of global food production. Here we proposed a generic framework to assess the impact of climate-induced crop yield risk under both current and future scenarios by combining a stochastic model for synthetic climate generation with a well-validated statistical crop yield model. The synthetic climate patterns were generated using the extended Empirical Orthogonal Function method based on historically observed and projected climate conditions. We applied our framework to assess the corn and soybean yield risk in the U.S. Midwest for historical and future climate conditions. We found that: (1) in the U.S. Midwest, about 45% and 40% of the interannual variability in corn and soybean yield, respectively, can be explained by the climate; (2) the risk level is higher in the southwest and northwest regions of the U.S. Midwest corresponding to 25% yield reduction for both corn and soybean compared to other regions; (3) the severity for the 1988 and 2012 major droughts quantified by our method represent 21-year and 30-year events for corn, and 7-year and 12-year events for soybean, respectively; (4) the crop yield risk will increase under a future climate scenario (i.e., Representative Concentration Pathway 8.5 or RCP 8.5 at 2050) compared with the current climate condition, with averaged yield decreases and yield variability increases for both corn and soybean. The framework and the results of this study enable applications for risk management policies and practices for the agriculture sectors.more » « less