skip to main content


Title: Measuring and Understanding Online Reading Behaviors of People with Dyslexia
Extending the benefits of online reading to people with reading disabilities such as dyslexia requires broader research on reading behavior in addition to existing small-scale eye-tracking studies. We conduct the first large-scale mixed-methods study of the unique reading challenges of people with dyslexia. We combine in-person interviews (N=6), online surveys (N=566) and a novel browser-based tool able to measure detailed reading behavior remotely on a controlled set of five pages (N=477) or as a browser extension (N=89) collecting long-term reading behavior data on self-selected pages. We find a variety of text and page layout factors that pose challenges to readers with and without dyslexia, and identify in-browser reading behaviors associated with dyslexia. Findings point toward improvements to technologies for identifying struggling readers, and to ways to improve the layout and appearance of online articles to improve reading ease for people with and without dyslexia.  more » « less
Award ID(s):
1840751
NSF-PAR ID:
10170285
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
In submission
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rich engagement data can shed light on how people interact with online content and how such interactions may be determined by the content of the page. In this work, we investigate a specific type of interaction, backtracking, which refers to the action of scrolling back in a browser while reading an online news article. We leverage a dataset of close to 700K instances of more than 15K readers interacting with online news articles, in order to characterize and predict backtracking behavior. We first define different types of backtracking actions. We then show that “full” backtracks, where the readers eventually return to the spot at which they left the text, can be predicted by using features that were previously shown to relate to text readability. This finding highlights the relationship between backtracking and readability and suggests that backtracking could help assess readability of content at scale. 
    more » « less
  2. Navigating unfamiliar websites is challenging for users with visual impairments. Although many websites offer visual cues to facilitate access to pages/features most websites are expected to have (e.g., log in at the top right), such visual shortcuts are not accessible to users with visual impairments. Moreover, although such pages serve the same functionality across websites (e.g., to log in, to sign up), the location, wording, and navigation path of links to these pages vary from one website to another. Such inconsistencies are challenging for users with visual impairments, especially for users of screen readers, who often need to linearly listen to content of pages to figure out how to access certain website features. To study how to improve access to main website features, we iteratively designed and tested a command-based approach for main features of websites via a browser extension powered by machine learning and human input. The browser extension gives users a way to access high-level website features (e.g., log in, find stores, contact) via keyboard commands. We tested the browser extension in a lab setting with 15 Internet users, including 9 users with visual impairments and 6 without. Our study showed that commands for main website features can greatly improve the experience of users with visual impairments. People without visual impairments also found command-based access helpful when visiting unfamiliar, cluttered, or infrequently visited websites, suggesting that this approach can support users with visual impairments while also benefiting other user groups (i.e., universal design). Our study reveals concerns about the handling of unsupported commands and the availability and trustworthiness of human input. We discuss how websites, browsers, and assistive technologies could incorporate a command-based paradigm to enhance web accessibility and provide more consistency on the web to benefit users with varied abilities when navigating unfamiliar or complex websites. 
    more » « less
  3. Ensuring effective public understanding of algorithmic decisions that are powered by machine learning techniques has become an urgent task with the increasing deployment of AI systems into our society. In this work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to support non-experts in understanding the performance of machine learning models. Through interviews (n=7) and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a series of alternative representations target each of those challenges in the context of an algorithm for making recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time, and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we significantly improve users’ understanding and (2) flow charts, which help point out the direction of reading the data, were most useful in improving objective understanding. Our findings set the stage for developing more intuitive and generally understandable representations of the performance of machine learning models 
    more » « less
  4. Phishing is a ubiquitous and increasingly sophisticated online threat. To evade mitigations, phishers try to ""cloak"" malicious content from defenders to delay their appearance on blacklists, while still presenting the phishing payload to victims. This cat-and-mouse game is variable and fast-moving, with many distinct cloaking methods---we construct a dataset identifying 2,933 real-world phishing kits that implement cloaking mechanisms. These kits use information from the host, browser, and HTTP request to classify traffic as either anti-phishing entity or potential victim and change their behavior accordingly. In this work we present SPARTACUS, a technique that subverts the phishing status quo by disguising user traffic as anti-phishing entities. These intentional false positives trigger cloaking behavior in phishing kits, thus hiding the malicious payload and protecting the user without disrupting benign sites. To evaluate the effectiveness of this approach, we deployed SPARTACUS as a browser extension from November 2020 to July 2021. During that time, SPARTACUS browsers visited 160,728 reported phishing URLs in the wild. Of these, SPARTACUS protected against 132,274 sites (82.3%). The phishing kits which showed malicious content to SPARTACUS typically did so due to ineffective cloaking---the majority (98.4%) of the remainder were detected by conventional anti-phishing systems such as Google Safe Browsing or VirusTotal, and would be blacklisted regardless. We further evaluate SPARTACUS against benign websites sampled from the Alexa Top One Million List for impacts on latency, accessibility, layout, and CPU overhead, finding minimal performance penalties and no loss in functionality. 
    more » « less
  5. null (Ed.)
    Monetizing websites and web apps through online advertising is widespread in the web ecosystem, creating a billion-dollar market. This has led to the emergence of a vast network of tertiary ad providers and ad syndication to facilitate this growing market. Nowadays, the online advertising ecosystem forces publishers to integrate ads from these third-party domains. On the one hand, this raises several privacy and security concerns that are actively being studied in recent years. On the other hand, the ability of today's browsers to load dynamic web pages with complex animations and Javascript has also transformed online advertising. This can have a significant impact on webpage performance. The latter is a critical metric for optimization since it ultimately impacts user satisfaction. Unfortunately, there are limited literature studies on understanding the performance impacts of online advertising which we argue is as important as privacy and security. In this paper, we apply an in-depth and first-of-a-kind performance evaluation of web ads. Unlike prior efforts that rely primarily on adblockers, we perform a fine-grained analysis on the web browser's page loading process to demystify the performance cost of web ads. We aim to characterize the cost by every component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad's performance with detailed guidance. For this purpose, we develop a tool, adPerf, for the Chrome browser that classifies page loading workloads into ad-related and main-content at the granularity of browser activities. Our evaluations show that online advertising entails more than 15% of browser page loading workload and approximately 88% of that is spent on JavaScript. On smartphones, this additional cost of ads is 7% lower since mobile pages include fewer and well-optimized ads. We also track the sources and delivery chain of web ads and analyze performance considering the origin of the ad contents. We observe that 2 of the well-known third-party ad domains contribute to 35% of the ads performance cost and surprisingly, top news websites implicitly include unknown third-party ads which in some cases build up to more than 37% of the ads performance cost. 
    more » « less