skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early Drought-Responsive Genes Are Variable and Relevant to Drought Tolerance
Drought stress is an important crop yield limiting factor worldwide. Plant physiological responses to drought stress are driven by changes in gene expression. While drought-responsive genes (DRGs) have been identified in maize, regulation patterns of gene expression during progressive water deficits remain to be elucidated. In this study, we generated time-series transcriptomic data from the maize inbred line B73 under well-watered and drought conditions. Comparisons between the two conditions identified 8,626 DRGs and the stages (early, middle, and late drought) at which DRGs occurred. Different functional groups of genes were regulated at the three stages. Specifically, early and middle DRGs display higher copy number variation among diverse Zea mays lines, and they exhibited stronger associations with drought tolerance as compared to late DRGs. In addition, correlation of expression between small RNAs (sRNAs) and DRGs from the same samples identified 201 negatively sRNA/DRG correlated pairs, including genes showing high levels of association with drought tolerance, such as two glutamine synthetase genes, gln2 and gln6 . The characterization of dynamic gene responses to progressive drought stresses indicates important adaptive roles of early and middle DRGs, as well as roles played by sRNAs in gene expression regulation upon drought stress.  more » « less
Award ID(s):
1741090
PAR ID:
10170444
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
G3: Genes|Genomes|Genetics
Volume:
10
Issue:
5
ISSN:
2160-1836
Page Range / eLocation ID:
1657 to 1670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plants balance their competing requirements for growth and stress tolerance via a sophisticated regulatory circuitry that controls responses to the external environments. We have identified a plant-specific gene, COST1 ( constitutively stressed 1 ), that is required for normal plant growth but negatively regulates drought resistance by influencing the autophagy pathway. An Arabidopsis thaliana cost1 mutant has decreased growth and increased drought tolerance, together with constitutive autophagy and increased expression of drought-response genes, while overexpression of COST1 confers drought hypersensitivity and reduced autophagy. The COST1 protein is degraded upon plant dehydration, and this degradation is reduced upon treatment with inhibitors of the 26S proteasome or autophagy pathways. The drought resistance of a cost1 mutant is dependent on an active autophagy pathway, but independent of other known drought signaling pathways, indicating that COST1 acts through regulation of autophagy. In addition, COST1 colocalizes to autophagosomes with the autophagosome marker ATG8e and the autophagy adaptor NBR1, and affects the level of ATG8e protein through physical interaction with ATG8e, indicating a pivotal role in direct regulation of autophagy. We propose a model in which COST1 represses autophagy under optimal conditions, thus allowing plant growth. Under drought, COST1 is degraded, enabling activation of autophagy and suppression of growth to enhance drought tolerance. Our research places COST1 as an important regulator controlling the balance between growth and stress responses via the direct regulation of autophagy. 
    more » « less
  2. null (Ed.)
    Like many cereal crops, barley is also negatively affected by drought stress. However, due to its simple genome as well as enhanced stress resilient nature compared to rice and wheat, barley has been considered as a model to decipher drought tolerance in cereals. In the present study, transcriptomic and hormonal profiles along with several biochemical features were compared between drought-tolerant (Otis) and drought-sensitive (Baronesse) barley genotypes subjected to drought to identify molecular and biochemical differences between the genotypes. The drought-induced decrease in the leaf relative water content, net photosynthesis, and biomass accumulation was relatively low in Otis compared to Baronesse. The hormonal profiles did not reveal significant differences for majority of the compounds other than the GA20 and the cis-zeatin-o-glucoside (c-ZOG), whose levels were greatly increased in Otis compared to Baronesse under drought. The major differences that emerged from the transcriptome analysis are; (1), the overall number of differentially expressed genes was relatively low in drought-tolerant Otis compared to drought-sensitive Baronesse; (2), a wax biosynthesis gene (CER1), and NAC transcription factors were specifically induced in Otis but not in Baronesse; (3), the degree of upregulation of betaine aldehyde dehydrogenase and a homeobox transcription factor (genes with proven roles in imparting drought tolerance), was greater in Otis compared to Baronesse; (4) the extent of downregulation of gene expression profiles for proteins of the reaction center photosystem II (PSII) (D1 and D2) was low in Otis compared to Baronesse; and, (5), alternative splicing (AS) was also found to differ between the genotypes under drought. Taken together, the overall transcriptional responses were low in drought-tolerant Otis but the genes that could confer drought tolerance were either specifically induced or greatly upregulated in the tolerant genotype and these differences could be important for drought tolerance in barley. 
    more » « less
  3. Irfan, Mohammad (Ed.)
    Drought is a significant environmental stressor that severely impairs plant growth and agricultural productivity. Unraveling the molecular mechanisms underlying plant responses to drought is crucial for developing crops with enhanced resilience. In this study, we investigated the transcriptomic responses of cultivated tomato (Solanum lycopersicum) and its drought-tolerant wild relative,Solanum pennellii, to identify “stress-ready” gene expression patterns associated with pre-adaptation to arid environments. Through RNA-seq analysis, we identified orthologous genes between the two species and compared their transcriptomic profiles under both control and drought conditions. Approximately 43% of the orthologous genes exhibited species-specific expression patterns, while nearly 20% were classified as stress-ready. These stress-ready genes were significantly enriched for functions related to nucleosome assembly, RNA metabolism, and transcriptional regulation. Furthermore, transcription factor binding motif analysis revealed a marked enrichment of ERF family motifs, emphasizing their role in both stress-ready and species-specific responses. Our findings indicate that regulatory mechanisms, particularly those mediated by ERF transcription factors, are pivotal to the drought resilience ofS. pennellii, providing a foundation for future crop improvement strategies. 
    more » « less
  4. null (Ed.)
    Drought stress is a major constraint in global maize production, causing almost 30–90% of the yield loss depending upon growth stage and the degree and duration of the stress. Here, we report that ectopic expression of Arabidopsis glutaredoxin S17 (AtGRXS17) in field grown maize conferred tolerance to drought stress during the reproductive stage, which is the most drought sensitive stage for seed set and, consequently, grain yield. AtGRXS17-expressing maize lines displayed higher seed set in the field, resulting in 2-fold and 1.5-fold increase in yield in comparison to the non-transgenic plants when challenged with drought stress at the tasseling and silking/pollination stages, respectively. AtGRXS17-expressing lines showed higher relative water content, higher chlorophyll content, and less hydrogen peroxide accumulation than wild-type (WT) control plants under drought conditions. AtGRXS17-expressing lines also exhibited at least 2-fold more pollen germination than WT plants under drought stress. Compared to the transgenic maize, WT controls accumulated higher amount of proline, indicating that WT plants were more stressed over the same period. The results present a robust and simple strategy for meeting rising yield demands in maize under water limiting conditions. 
    more » « less
  5. Sareen, Sindhu (Ed.)
    Potassium (K+) is the most abundant cation that plays a crucial role in various cellular processes in plants. Plants have developed an efficient mechanism for the acquisition of K+ when grown in K+ deficient or saline soils. A total of 47 K+ transport gene homologs (27 HAKs, 4 HKTs, 2 KEAs, 9 AKTs, 2 KATs, 2 TPCs, and 1 VDPC) have been identified in Sorghum bicolor. Of 47 homologs, 33 were identified as K+ transporters and the remaining 14 as K+ channels. Chromosome 2 has been found as the hotspot of K+ transporters with 9 genes. Phylogenetic analysis revealed the conservation of sorghum K+ transport genes akin to Oryza sativa. Analysis of regulatory elements indicates the key roles that K+ transport genes play under different biotic and abiotic stress conditions. Digital expression data of different developmental stages disclosed that expressions were higher in milk, flowering, and tillering stages. Expression levels of the genes SbHAK27 and SbKEA2 were higher during milk, SbHAK17, SbHAK11, SbHAK18, and SbHAK7 during flowering, SbHAK18, SbHAK10, and 23 other gene expressions were elevated during tillering inferring the important role that K+ transport genes play during plant growth and development. Differential transcript expression was observed in different tissues like root, stem, and leaf under abiotic stresses such as salt, drought, heat, and cold stresses. Collectively, the in-depth genome-wide analysis and differential transcript profiling of K+ transport genes elucidate their role in ion homeostasis and stress tolerance mechanisms. 
    more » « less