skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Ectopic Expression of a Heterologous Glutaredoxin Enhances Drought Tolerance and Grain Yield in Field Grown Maize
Drought stress is a major constraint in global maize production, causing almost 30–90% of the yield loss depending upon growth stage and the degree and duration of the stress. Here, we report that ectopic expression of Arabidopsis glutaredoxin S17 (AtGRXS17) in field grown maize conferred tolerance to drought stress during the reproductive stage, which is the most drought sensitive stage for seed set and, consequently, grain yield. AtGRXS17-expressing maize lines displayed higher seed set in the field, resulting in 2-fold and 1.5-fold increase in yield in comparison to the non-transgenic plants when challenged with drought stress at the tasseling and silking/pollination stages, respectively. AtGRXS17-expressing lines showed higher relative water content, higher chlorophyll content, and less hydrogen peroxide accumulation than wild-type (WT) control plants under drought conditions. AtGRXS17-expressing lines also exhibited at least 2-fold more pollen germination than WT plants under drought stress. Compared to the transgenic maize, WT controls accumulated higher amount of proline, indicating that WT plants were more stressed over the same period. The results present a robust and simple strategy for meeting rising yield demands in maize under water limiting conditions.  more » « less
Award ID(s):
1741090
PAR ID:
10274265
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
22
Issue:
10
ISSN:
1422-0067
Page Range / eLocation ID:
5331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ERECTA (ER) family of genes, encoding leucine-rich repeat receptor-like kinase (RLK), influences complex morphological and physiological aspects of plants. Modulation of ER signaling leads to abiotic stress tolerance in diverse plant species. However, whether the gain in stress tolerance is accompanied with desirable agronomic performance is not clearly known. In this study, soybean plants potentially suppressed in ER signaling were evaluated for the phenotypic performance and drought response in the greenhouse. These plants expressed a dominant-negative Arabidopsis thaliana ER ( AtER ) called Δ Kinase to suppress ER signaling, which has previously been linked with the tolerance to water deficit, a major limiting factor for plant growth and development, directly compromising agricultural production. With the aim to select agronomically superior plants as stress-tolerant lines, transgenic soybean plants were subjected to phenotypic selection and subsequently to water stress analysis. This study found a strong inverse correlation of Δ Kinase expression with the agronomic performance of soybean plants, indicating detrimental effects of expressing Δ Kinase that presumably led to the suppression of ER signaling. Two lines were identified that showed favorable agronomic traits and expression of Δ Kinase gene, although at lower levels compared with the rest of the transgenic lines. The drought stress analysis on the progenies of these lines, however, showed that these plants were more susceptible to water-deficit stress as compared with the non-transgenic controls. The selected transgenic plants showed greater stomata density and conductance, which potentially led to higher biomass, and consequently more water demand and greater susceptibility to the periods of water withholding. 
    more » « less
  2. null (Ed.)
    It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM-specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in CAM plants, would enhance both photosynthesis and abiotic stress tolerance. To test this hypothesis, we engineered a CAM-specific PEPC gene (named AaPEPC1) from Agave americana into tobacco. In comparison with wild-type and empty vector controls, transgenic tobacco plants constitutively expressing AaPEPC1 showed a higher photosynthetic rate and biomass production under normal conditions, along with significant carbon metabolism changes in malate accumulation, the carbon isotope ratio δ13C, and the expression of multiple orthologs of CAM-related genes. Furthermore, AaPEPC1 overexpression enhanced proline biosynthesis, and improved salt and drought tolerance in the transgenic plants. Under salt and drought stress conditions, the dry weight of transgenic tobacco plants overexpressing AaPEPC1 was increased by up to 81.8% and 37.2%, respectively, in comparison with wild-type plants. Our findings open a new door to the simultaneous improvement of photosynthesis and stress tolerance in plants. 
    more » « less
  3. Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 fromArabidopsis thaliana(AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment. 
    more » « less
  4. Abstract The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance. 
    more » « less
  5. Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation. 
    more » « less