skip to main content


Title: Localized and delocalized bound states of the main isotopologue 48 O 3 and of 18 O-enriched 50 O 3 isotopomers of the ozone molecule near the dissociation threshold
Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48 O 3 = 16 O 16 O 16 O and for the family of 18 O-enriched isotopomers 50 O 3 = { 16 O 16 O 18 O, 16 O 18 O 16 O, 18 O 16 O 16 O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48 O 3 and of two identical nuclei in 50 O 3 , using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm −1 , making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computed and analyzed. The states situated deep in the three (for 48 O 3 ) or two (for 50 O 3 ) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration–rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time.  more » « less
Award ID(s):
1806915
NSF-PAR ID:
10170504
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thick (23 µm) films of κ-Ga 2 O 3 were grown by Halide Vapor Phase Epitaxy (HVPE) on GaN/sapphire templates at 630 °C. X-ray analysis confirmed the formation of single-phase κ-Ga 2 O 3 with half-widths of the high-resolution x-ray diffraction (004), (006), and (008) symmetric reflections of 4.5 arc min and asymmetric (027) reflection of 14 arc min. Orthorhombic κ-Ga 2 O 3 polymorph formation was confirmed from analysis of the Kikuchi diffraction pattern in electron backscattering diffraction. Secondary electron imaging indicated a reasonably flat surface morphology with a few (area density ∼10 3  cm −2 ) approximately circular (diameter ∼50–100 µm) uncoalesced regions, containing κ-Ga 2 O 3 columns with in-plane dimensions and a height of about 10 µm. Micro-cathodoluminescence (MCL) spectra showed a wide 2–3.5 eV band that could be deconvoluted into narrower bands peaked at 2.59, 2.66, 2.86, and 3.12 eV. Ni Schottky diodes prepared on the films showed good rectification but a high series resistance. The films had a thin near-surface region dominated by E c − 0.7 eV deep centers and a deeper region (∼2 µm from the surface) dominated by shallow donors with concentrations of ≤10 16  cm −3 . Photocurrent and photocapacitance spectra showed the presence of deep compensating acceptors with optical ionization energies of ∼1.35 and 2.3 eV, the latter being close to the energy of one of the MCL bands. Deep level transient spectroscopy revealed deep traps with energies near 0.3, 0.6, 0.7, 0.8, and 1 eV from the conduction band edge. The results show the potential of HVPE to grow very thick κ-Ga 2 O 3 on GaN/sapphire templates. 
    more » « less
  2. null (Ed.)
    Scattering resonances above dissociation threshold are computed for four isotopically substituted ozone species: 16 O 18 O 16 O, 16 O 16 O 18 O, 18 O 16 O 18 O and 16 O 18 O 18 O, using a variational method with accurate treatment of the rotation–vibration coupling terms (Coriolis effect) for all values of the total angular momentum J from 0 to 4. To make these calculations numerically affordable, a new approach was developed which employs one vibrational basis set optimized for a typical rotational excitation ( J , Λ ), to run coupled rotation–vibration calculations at several desired values of J . In order to quantify the effect of Coriolis coupling, new data are contrasted with those computed using the symmetric-top rotor approximation, where the rotation–vibration coupling terms are neglected. It is found that, overall, the major properties of scattering resonances (such as their lifetimes, the number of these states, and their cumulative partition function Q ) are all influenced by the Coriolis effect and this influence grows as the angular momentum J is raised. However, it is found that the four isotopically substituted ozone molecules are affected roughly equally by the Coriolis coupling. When the ratio η of partition functions for asymmetric over symmetric ozone molecules is computed, the Coriolis effect largely cancels, and this cancelation seems to occur for all values of J . Therefore, it does not seem grounded to attribute any appreciable mass-independent symmetry-driven isotopic fractionation to the Coriolis coupling effect. 
    more » « less
  3. Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications. 
    more » « less
  4. Polaron formation following optical absorption is a key process that defines the photophysical properties of many semiconducting transition metal oxides, which comprise an important class of materials with potential optoelectronic and photocatalytic applications. In this work, we use hematite (α-Fe 2 O 3 ) as a model transition metal oxide semiconductor to demonstrate the feasibility of direct optical population of band edge polaronic states. We employ first-principles electron–phonon computations within the framework of the density functional theory+ U+ J method to reveal the presence of these states within a thermal distribution of phonon displacements and model their evolution with temperature. Our computations reproduce the temperature dependence of the optical dielectric function of hematite with remarkable accuracy and indicate that the band edge optical absorption and second-order resonance Raman spectra arise from polaronic optical transitions involving coupling to longitudinal optical phonons with energies greater than 50 meV. Additionally, we find that the resulting polaron comprises an electron localized to two adjacent Fe atoms with distortions that lie primarily along the coordinates of phonons with energies of 31 and 81 meV. 
    more » « less
  5. The kinetic energy dependent reactions of Re + with SO 2 were studied with guided ion beam tandem mass spectrometry. ReO + , ReO 2 + , and OReS + species were observed as products, all in endothermic reactions. Modeling of the kinetic energy dependent cross sections yields 0 K bond dissociation energies (BDEs, in eV) of 4.78 ± 0.06 (Re + –O), 5.75 ± 0.02 (Re + –O 2 ), and 4.35 ± 0.14 (Re + –SO). The latter two values can be combined with other information to derive the additional values 6.05 ± 0.05 (ORe + –O) and 4.89 ± 0.19 (ORe + –S). BDEs of ReO + and ReO 2 + agree with literature values whereas the values for OReS + are the first measurements. The former result is obtained even though formation of ground state ReO + is spin-forbidden. Quantum mechanical calculations at the B3LYP level of theory with a def2-TZVPPD basis set yield results that agree reasonably well with experimental values. Additional calculations at the BP86 and CCSD(T) levels of theory using def2-QZVPPD and aug-cc-pVxZ (x = T, Q, and 5) basis sets were performed to compare thermochemistry with experiment to determine that ReO 2 + rather than the isobaric ReS + is formed. Product ground states are 3 Δ 3 (ReO + ), 3 B 1 (OReO + ), 5 Π −1 (ReS + ), and 3 A′′(OReS + ) after including empirical spin–orbit corrections, which means that formation of ground state products is spin-forbidden for all three product channels. The potential energy surfaces for the ReSO 2 + system were also explored at the B3LYP/def2-TZVPPD level and exhibited no barriers in excess of the endothermicities for all products. BDEs for rhenium oxide and sulfide diatomics and triatomics are compared and discussed. The present result for formation of ReO + is compared to that for formation of ReO + in the reactions of Re + + O 2 and CO, where the former system exhibited interesting dual cross section features. Results are consistent with the hypothesis that the distinction of in-plane and out-of-plane C S symmetry in the triatomic systems might be the explanation for the two endothermic features observed in the Re + + O 2 reaction. 
    more » « less