Abstract Tropospheric18O18O is an emerging proxy for past tropospheric ozone and free‐tropospheric temperatures. The basis of these applications is the idea that isotope‐exchange reactions in the atmosphere drive18O18O abundances toward isotopic equilibrium. However, previous work used an offline box‐model framework to explain the18O18O budget, approximating the interplay of atmospheric chemistry and transport. This approach, while convenient, has poorly characterized uncertainties. To investigate these uncertainties, and to broaden the applicability of the18O18O proxy, we developed a scheme to simulate atmospheric18O18O abundances (quantified as ∆36values) online within the GEOS‐Chem chemical transport model. These results are compared to both new and previously published atmospheric observations from the surface to 33 km. Simulations using a simplified O2isotopic equilibration scheme within GEOS‐Chem show quantitative agreement with measurements only in the middle stratosphere; modeled ∆36values are too high elsewhere. Investigations using a comprehensive model of the O‐O2‐O3isotopic photochemical system and proof‐of‐principle experiments suggest that the simple equilibration scheme omits an important pressure dependence to ∆36values: the anomalously efficient titration of18O18O to form ozone. Incorporating these effects into the online ∆36calculation scheme in GEOS‐Chem yields quantitative agreement for all available observations. While this previously unidentified bias affects the atmospheric budget of18O18O in O2, the modeled change in the mean tropospheric ∆36value since 1850 CE is only slightly altered; it is still quantitatively consistent with the ice‐core ∆36record, implying that the tropospheric ozone burden increased less than 40% over the twentieth century.
more »
« less
Localized and delocalized bound states of the main isotopologue 48 O 3 and of 18 O-enriched 50 O 3 isotopomers of the ozone molecule near the dissociation threshold
Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48 O 3 = 16 O 16 O 16 O and for the family of 18 O-enriched isotopomers 50 O 3 = { 16 O 16 O 18 O, 16 O 18 O 16 O, 18 O 16 O 16 O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48 O 3 and of two identical nuclei in 50 O 3 , using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm −1 , making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computed and analyzed. The states situated deep in the three (for 48 O 3 ) or two (for 50 O 3 ) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration–rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time.
more »
« less
- Award ID(s):
- 1806915
- PAR ID:
- 10170504
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- ISSN:
- 1463-9076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ion implantation of H+and D+into Ga2O3produces several O–H and O–D centers that have been investigated by vibrational spectroscopy. These defects include the dominant VGa(1)-2H and VGa(1)-2D centers studied previously along with additional defects that can be converted into this structure by thermal annealing. The polarization dependence of the spectra has also been analyzed to determine the directions of the transition moments of the defects and to provide information about defect structure. Our experimental results show that the implantation of H+(or D+) into Ga2O3produces two classes of defects with different polarization properties. Theory finds that these O–H (or O–D) centers are based on two shifted configurations of a Ga(1) vacancy that trap H (or D) atom(s). The interaction of VGa(1)-nD centers with other defects in the implanted samples has also been investigated to help explain the number of O–D lines seen and their reactions upon annealing. Hydrogenated divacancy VGa(1)-VOcenters have been considered as an example.more » « less
-
null (Ed.)Scattering resonances above dissociation threshold are computed for four isotopically substituted ozone species: 16 O 18 O 16 O, 16 O 16 O 18 O, 18 O 16 O 18 O and 16 O 18 O 18 O, using a variational method with accurate treatment of the rotation–vibration coupling terms (Coriolis effect) for all values of the total angular momentum J from 0 to 4. To make these calculations numerically affordable, a new approach was developed which employs one vibrational basis set optimized for a typical rotational excitation ( J , Λ ), to run coupled rotation–vibration calculations at several desired values of J . In order to quantify the effect of Coriolis coupling, new data are contrasted with those computed using the symmetric-top rotor approximation, where the rotation–vibration coupling terms are neglected. It is found that, overall, the major properties of scattering resonances (such as their lifetimes, the number of these states, and their cumulative partition function Q ) are all influenced by the Coriolis effect and this influence grows as the angular momentum J is raised. However, it is found that the four isotopically substituted ozone molecules are affected roughly equally by the Coriolis coupling. When the ratio η of partition functions for asymmetric over symmetric ozone molecules is computed, the Coriolis effect largely cancels, and this cancelation seems to occur for all values of J . Therefore, it does not seem grounded to attribute any appreciable mass-independent symmetry-driven isotopic fractionation to the Coriolis coupling effect.more » « less
-
Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications.more » « less
-
Deep centers and their influence on photocurrent spectra and transients were studied for interdigitated photoresistors on α -Ga 2 O 3 undoped semi-insulating films grown by Halide Vapor Phase Epitaxy (HVPE) on sapphire. Characterization involving current-voltage measurements in the dark and with monochromatic illumination with photons with energies from 1.35 eV to 4.9 eV, Thermally Stimulated Current (TSC), Photoinduced Current Transients Spectroscopy (PICTS) showed the Fermi level in the dark was pinned at E c −0.8 eV, with other prominent centers being deep acceptors with optical thresholds near 2.3 eV and 4.9 eV and deep traps with levels at E c −0.5 eV, E c −0.6 eV. Measurements of photocurrent transients produced by illumination with photon energies 2.3 eV and 4.9 eV and Electron Beam Induced Current (EBIC) imaging point to the high sensitivity and external quantum efficiency values being due to hole trapping enhancing the lifetime of electrons and inherently linked with the long photocurrent transients. The photocurrent transients are stretched exponents, indicating the strong contribution of the presence of centers with barriers for electron capture and/or of potential fluctuations.more » « less
An official website of the United States government

