What We Have Learned From the Framework for Ocean Observing: Evolution of the Global Ocean Observing System
More Like this
-
Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW’s key role in regulating Earth’s climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope wherein situmeasurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, wherein situobservations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system.more » « less
-
Abstract OneArgo is a major expansion of the Argo program, which has provided two decades of transformative physical data for the upper 2 km of the global ocean. The present Argo array will be expanded in three ways: (1) Global Core: the existing upper ocean measurements will be extended to high latitudes and marginal seas and with enhanced coverage in the tropics and western boundaries of the major ocean basins; (2) Deep: deep ocean measurements will be obtained for the 50% of the global oceans that are below 2,000-m depth; and (3) Biogeochemical: dissolved oxygen, pH, nitrate, chlorophyll, optical backscatter, and irradiance data will be collected to investigate biogeochemical variability of the upper ocean and the processes by which these cycles respond to a changing climate. The technology and infrastructure necessary for this expansion is now being developed through large-scale regional pilots to further refine the floats and sensors and to demonstrate the utility of these measurements. Further innovation is expected to improve the performance of the floats and sensors and to develop the analyses necessary to provide research-quality data. A fully global OneArgo should be operational within 5‐10 years.more » « less
-
Global climate is regulated by the ocean, which stores, releases, and transports large amounts of mass, heat, carbon, and oxygen. Understanding, monitoring, and predicting the exchanges of these quantities across the ocean’s surface, their interactions with the atmosphere, and their horizontal and vertical pathways through the global oceans, are key for advancing fundamental knowledge and improving forecasts and longer-term projections of climate, weather, and ocean ecosystems. The existing global observing system provides immense value for science and society in this regard by supplying the data essential for these advancements. The tropical ocean observing system in particular has been developed over decades, motivated in large part by the far-reaching and complex global impacts of tropical climate variability and change. However, changes in observing needs and priorities, new challenges associated with climate change, and advances in observing technologies demand periodic evaluations to ensure that stakeholders’ needs are met. Previous reviews and assessments of the tropical observing system have focused separately on individual basins and their associated observing needs. Here we provide a broader perspective covering the tropical observing system as a whole. Common gaps, needs, and recommendations are identified, and interbasin differences driven by socioeconomic disparities are discussed, building on the concept of an integrated pantropical observing system. Finally, recommendations for improved observations of tropical basin interactions, through oceanic and atmospheric pathways, are presented, emphasizing the benefits that can be achieved through closer interbasin coordination and international partnerships.more » « less
An official website of the United States government

